CMOS Noise Modeling and Measurements at 60 GHz - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

CMOS Noise Modeling and Measurements at 60 GHz

Description:

... and Measurements at 60 GHz. Chinh H. Doan. Timo Karttaavi. Robert W. Brodersen. January 13, 2005. Outline ... Holistic noise model for short-channel and ... – PowerPoint PPT presentation

Number of Views:56
Avg rating:3.0/5.0
Slides: 23
Provided by: cdo61
Category:

less

Transcript and Presenter's Notes

Title: CMOS Noise Modeling and Measurements at 60 GHz


1
CMOS Noise Modeling and Measurements at 60 GHz
  • Chinh H. Doan
  • Timo Karttaavi
  • Robert W. Brodersen
  • January 13, 2005

2
Outline
  • Review of millimeter-wave noise models
  • Physics-based compact models
  • Measurement-based empirical models
  • Small-signal equivalent-circuit models
  • Millimeter-wave noise measurements
  • Noise parameter (variable ZS)
  • Lossy pad de-embedding
  • Simulated and measured results
  • Individual CMOS transistors
  • 60-GHz amplifier circuit

3
RF Noise Model (van der Ziel)
  • Short-channel drain current noise
  • Induced gate noise
  • Partial correlation due to NQS
  • Flicker noise negligible at RF

4
Compact Noise Models
BSIM4
Philips MOS Model 11
  • Holistic noise model for short-channel and
    velocity saturation effects
  • Noise partitioning for correlated gate noise
  • Channel segmentation
  • Automatically includes induced gate noise,
    partial correlation, NQS resistance

5
Measurement-Based Noise Models
  • Fixed bias point and frequency
  • Two external correlated noise sources
  • Two-port modeled as noiseless
  • Represented with four real parameters (Fmin,
    Zopt, Rn)

6
Equivalent-Circuit Noise Models
PRC
Pospieszalski
  • Uncorrelated gate noise voltage and drain noise
    current
  • NQS resistance contributes thermal noise at
    ambient temperature
  • One independent variable
  • Essentially equivalent to van der Ziel model
  • Extract P, R, C from measurements

7
Extended Transistor Noise Modeling
Pospieszalski noise model used for intrinsic
device
  • Lumped, frequency-independent parasitic model
  • RG and rnqs thermal noise for gate resistance and
    induced gate noise (not correlated to drain
    noise)
  • Excess short-channel drain noise current (gamma
    1.4)

8
50-75 GHz Noise Parameters (VTT)
  • 50-75 GHz noise parameter characterization (Fmin,
    Zopt, Rn)
  • VTT measuring noise parameters for BWRC 130-nm
    CMOS devices (individual transistors, cascodes,
    etc.)

9
Test Structures and Pad De-embedding
80x1/0.13 NMOS
  • Test structures
  • Calibration structures (Open, short, through)
  • NMOS 40x1, 60x1, 80x1, 100x1, 80x1_Ldeg, Cascode
    80x1
  • Bias settings (IDS/W 50, 100, 150, 200, 250
    uA/um)
  • Pad de-embedding Hillbrand76
  • Pads are passive, reciprocal network
  • Noise correlation matrices
  • De-embed cascaded noisy two-ports

10
40x1 Noise Params (IDS100uA/um)
11
40x1 Noise Params (IDS 150uA/um)
12
60x1 Noise Params (IDS 100uA/um)
13
60x1 Noise Params (IDS 150uA/um)
14
80x1 Noise Params (IDS 100uA/um)
15
80x1 Noise Params (IDS 150uA/um)
16
80x1 Noise Params (IDS 200uA/um)
Fitting not as good
17
80x1 Cascode Noise Params (IDS 150uA/um)
18
60-GHz Amplifier Schematic
  • 3-stage cascode amplifier design
  • Cascode transistors improve isolation, stability
  • Input/output matching networks designed to match
    50 O
  • Pads are included as part of amplifier
  • Designed using only measured components

19
50-75 GHz Noise Figure (Agilent)
Agilent 8973A Noise Figure Analyzer
V-band Noise Source
Isolator
Waveguide Probes
OML Mixer
20
60-GHz Amplifier Noise Figure
21
Conclusions
  • Pospieszalski intrinsic noise model
  • Increased channel current noise (gamma 1.4)
  • RG and rnqs for gate resistance and induced gate
    noise (uncorrelated to drain noise)
  • VTT noise parameter device characterization
  • Accurate prediction of Zopt
  • Fmin within about 0.5 dB
  • Agilent circuit NF characterization of 60-GHz
    amplifier
  • Models provide good circuit NF prediction
  • Remaining issues
  • Phase error in Zopt Probe placement? Correlated
    noise? More sophistacated noise model?
  • Comparison to compact models?

22
Acknowledgments
  • VTT Millilab
  • H. Tran and K. Fujii, Agilent Technologies
  • DARPA TEAM project
  • STMicroelectronics
Write a Comment
User Comments (0)
About PowerShow.com