Title: Video/Image Fingerprinting
1Video/Image Fingerprinting Search
- Naren Chittar
- CS 223-B project, Winter 2008
2Problem Definition
- Given an image, find copies on the web.
- Given a video clip, find movie that it belongs
to. - Two problems
- Feature Extraction
- Efficient Search
3Feature Extraction
0 0 0 0 0 0 35 12 21 14 0 0 0 0 0 13 26 20 20
25 0 0 0 0 0 21 19 20 34 25 0 0 0 0 0 31 16 29 51
21 0 0 0 0 1 36 15 29 18 22 0 0 0 0 7 33 19 39 24
22
Partition into 10x10 blocks
Gradient magnitude
Normalized sum of gradients
Samples
4Search Inverted Index
0 0 0 0 0 0 0 0 0 0 0 35
0 13 26 0 21 19 29 51 21 29 18 22 39 24
22
0 0 0 0 0 0 35 12 21 14 0 0 0 0 0 13 26 20 20
25 0 0 0 0 0 21 19 20 34 25 0 0 0 0 0 31 16 29 51
21 0 0 0 0 1 36 15 29 18 22 0 0 0 0 7 33 19 39 24
22
Sliding and overlapping 3x3 window
DB (spatial data structure k-d tree)?
9 dim feature vectors
0 0... --gtdoc1.jpg, doc3.jpg, doc10.jpg 0 2
... --gtdoc2.jpg doc10.jpg
5Search (continued)?
0 0 0 0 0 0 0 0 0 0 0 35
0 13 26 0 21 19 29 51 21 29 18 22 39 24
22
hits
hits
Feature extraction
hits
query
Features
Hits 70 doc1234.jpg 20 doc2345.jpg 5
doc2222.jpg 1 doc2356.jpg .....
6Results
Database 10,000 images. From Flickr Test
set 30 images.
7Conclusions and Future Work
- Technique robust to scaling, resolution loss.
- Works only for small amount of cropping.
- Implement kd-tree for faster search.
- Enlarge database to 1 million images and include
videos. - Augment feature vector with color attributes and
other information. - Compute relevance score based on position of
feature vector in image.