Using Regression to - PowerPoint PPT Presentation

1 / 18
About This Presentation
Title:

Using Regression to

Description:

The F-test tests the hypothesis that the coefficients of all ... 1. Specify the null hypothesis. 2. Find the rejection region. 3. Calculate the statistic ... – PowerPoint PPT presentation

Number of Views:16
Avg rating:3.0/5.0
Slides: 19
Provided by: dekte
Category:

less

Transcript and Presenter's Notes

Title: Using Regression to


1
Chapter 4
  • Using Regression to
  • Estimate Trends

2
Trend Models
  • Linear trend,
  • Quadratic trend
  • Cubic trend
  • Exponential trend

3
Choosing a trend
  • Plot the data, choose possible models
  • Use goodness of fit measures to evaluate models
  • Try to Minimize the AIC and SBC
  • Choose a model

4
Mean Squared Error
5
Goodness of Fit Measures
  • Coefficient of Determination or R2

6
Goodness of Fit Measures
  • Adjusted R2

7
AIC and SBC
8
AIC and SBC(continued)
  • Choose the model that minimizes the AIC and SIC
  • Examples
  • choose AIC3 over AIC7
  • choose SIC-7 over SIC-5
  • The SIC has a larger penalty for extra
    parameters!

9
F-Test
The F-test tests the hypothesis that the
coefficients of all explanatory variables are
zero. A p-value less than .05 rejects the null
and concludes that our model has some value.
10
Testing the slopes
  • T-test tests a hypothesis about a coefficient.
  • A common hypothesis of interest is

11
Steps in a T-test
  • 1. Specify the null hypothesis
  • 2. Find the rejection region
  • 3. Calculate the statistic
  • 4. If the test statistic is in the rejection
    region then reject!

12
Figure 5.1 Student-t Distribution
f(t)


(???)
?/2
?/2
0
t
tc
-tc
red area rejection region for 2-sided test
13
An Example,n264
f(t)


.95
.025
.025
0
t
-1.96
1.96
red area rejection region for 2-sided test
14
LS // Dependent Variable is CARSALES Date
02/17/98 Time 1344 Sample 197601
199712 Included observations
264 Variable Coefficient Std.
Error t-Statistic Prob. C 13.10517
0.311923 42.01413 0.0000 TIME 0.000882
0.005479 0.160947 0.8723 TIME2 2.52E-05
2.02E-05 1.248790 0.2129 R-squared
0.107295 Mean dependent var
13.80292 Adjusted R-squared 0.100454 S.D.
dependent var 1.794726 S.E. of regression
1.702197 Akaike info criterion 1.075139 Sum
squared resid 756.2412 Schwarz criterion
1.115774 Log likelihood -513.5181
F-statistic 15.68487 Durbin-Watson stat
0.370403 Prob(F-statistic) 0.000000
15
Using our results
  • Plugging in our estimates
  • Not in the rejection region, dont reject!

16
P-Valuelined area.8725
f(t)


.95
.025
.025
0
t
-1.96
1.96
.016
red area rejection region for 2-sided test
17
Ideas for model building
  • F-stat is large, p-value.000000 implies our
    model does explain something
  • Fail to reject does not imply accept in a
    t-test
  • Idea, drop one of the variables

18
LS // Dependent Variable is CARSALES Date
02/17/98 Time 1400 Sample 197601
199712 Included observations
264 Variable Coefficient Std.
Error t-Statistic Prob. C 12.81594
0.209155 61.27481 0.0000 TIME 0.007506
0.001376 5.454057 0.0000 R-squared
0.101961 Mean dependent var 13.80292 Adjusted
R-squared 0.098533 S.D. dependent var
1.794726 S.E. of regression 1.704014 Akaike
info criterion 1.073520 Sum squared resid
760.7597 Schwarz criterion 1.100611 Log
likelihood -514.3044 F-statistic
29.74674 Durbin-Watson stat 0.368210 Prob(F-stati
stic) 0.000000
Write a Comment
User Comments (0)
About PowerShow.com