Title: Brief Overview of WynerZiv CODEC and Research Plan
1Brief Overview of Wyner-Ziv CODEC and Research
Plan
Jin-soo KIM
2Contents
- Overview of Wyner-Ziv CODEC
- Application of Wyner-Ziv CODEC
- Basic Principle of WZ CODEC
- Generation of S.I. at the Decoder
- How to Encode WZ frames
- Research Plan
- QA
3 4Video coding history and trends
H.265(?)
mobile
- Mobile 3low1high
- Low (battery, bandwidth, CPU)
- High cost
5(Conventional) Interframe Video Coding
PredictiveInterframe Encoder
PredictiveInterframe Decoder
X
Side Information
6Low Complexity Encoder
Wyner-ZivIntraframe Encoder
Wyner-ZivInterframe Decoder
X
Side Information
Witsenhausen, Wyner, 1980 Puri, Ramchandran,
Allerton 2002 Aaron, Zhang, Girod, Asilomar
2002
7Applications of WZ codec
- Light encoder and light decoder
- B. Girod, A. Aaron, S. Rane, D.
Rebollo-Monedero, Distributed video coding,
Proceedings of the IEEE, Vol93, pp71-83, Jan.
2005.
8Applications of WZ codechttp//www.discoverdvc.or
g/deliverables/Discover-D4.pdf
- Wireless low power video surveillance
- Disposable video cameras
- Sensor network
- Multi-view image acquisition
- Medical applications
- Networked camcoders
9Applications of WZ codechttp//www.discoverdvc.or
g/deliverables/Discover-D4.pdf
- SensorCam?PillCam?WearableCam?Disposable
cam.?ScanCam
10- Basic Principle of WZ CODEC
11Lossless Compression with Side Information
Wyner-Ziv showed that the conditional
rate-mean squared error distortion function for X
is the same whether the side information Y is
available only at the decoder, or both at the
encoder and the decoder.
12Shannon Theory with side info.
- Example) x dice number
- H(X) 6Slog26 2.58 bits
- Shannon coding theorem
- No error, if H(X) lt R(X) 3 bits
- If R(X) 2, 00,01,10,11?1,2,3,4,5,6
- With side information Yeven number
- H(XY) 3Slog23 1.58 lt R(XY) 2
Information loss
13Wyner-Ziv coding (lossy)
- A. Majumdar, R. Puri, P. Ishwar, K. Ramchandran,
Complexity/performance trade-offs for robust
distributed video coding, IEEE ICIP2005, Vol.
2, pp678-81, 11-14 Sept. 2005 - WZ quantization Slepian-Wolf
- Random coset partitioning operation,
- 3bit-info can be represented by 2bit (LSB first ?
increase ?) - X original value U quantized value
- Y side information in the decoder
- given Y sent 10?U101
14History of DVC
- Slepian and Wolf lossless DVC (1973)
- Noiseless coding of correlated information
sources, IEEE Tr. On Information Theory, 1973. - Wyner and Ziv lossy DVC (1976)
- The rate-distortion function for source coding
with side information at the decoder, IEEE Tr.
Information Theory, 1976. - Ramchandran in Berkeley PRISM (2002)
- Power-efficient, Robust, hIgh-compression,
Syndrome-based Multimedia coding - Girod in Stanford Good review (2005)
- Distributed video coding, IEEE Proceedings,
2005. - EU DISCOVER(2006), www.discoverdvc.org
- DIStributed COding for Video sERvices
15Towards Practical Slepian-Wolf Coding
- Convolution coding for data compression Blizard,
1969 - Convolutional source coding Hellman, 1975
- Syndrome source coding Ancheta, 1976
- Coset codes Pradhan and Ramchandran, 1999
- Trellis codes Wang and Orchard, 2001
- Turbo codes
- García-Frías and Zhao, 2001
- Bajcsy and Mitran, 2001
- Aaron and Girod, 2002
- LDPC codes Liveris, Xiong, and Georghiades,
2002 - . . .
- . . .
16- Generation of S.I. at the Decoder
17Motion Compensation
- Motion-compensated interpolation (MC-I)using the
decoded Key frame at time t-1 t1
18Side Information
19Motion Compensation
- Motion-compensated extrapolation (MC-E)estimate
the motion between the Wyner-ziv frame at time
t-2 and the Key frame at time t-1
20Side Information
21Motion Compensation
22 23Wyner-Ziv Residual Video Codec
WZ frames
X
WZ Encoder
WZ Decoder
W
X
Xer
Xer
Y
- Residual of a frame with respect to an encoder
reference frame (Xer) is fed into a Wyner-Ziv
encoder. To avoid drift, Xer should be
replicable at the decoder. - Since the decoder takes into account motion, Y is
expected to be a better estimate of frame X than
Xer. The Wyner-Ziv decoder uses both Y and Xer
to calculate the reconstruction X.
Aaron, Zhang, Girod, Asilomar 2002
24Pixel-Domain Wyner-Ziv Video Codec
Interframe Decoder
Intraframe Encoder
Slepian-Wolf Codec
WZ frames
Reconstruction
Turbo Encoder
Turbo Decoder
Scalar Quantizer
W
W
Buffer
Request bits
Side information
Y
Interpolation/ Extrapolation
Key frames
Conventional Intraframe decoding
Conventional Intraframe coding
I
I
Aaron, Zhang, Girod, Asilomar 2002
25Pixel-Domain Wyner-Ziv Video Codec
After Wyner-Ziv Decoding
Decoder side informationgenerated by
motion-compensated interpolationPSNR 24.8 dB
16-level quantization 2.0 bpp0 pixels in
errorPSNR 36.5 dB
Aaron, Zhang, Girod, Asilomar 2002
26DCT-Domain Wyner-Ziv Video Codec
Interframe Decoder
Intraframe Encoder
WZ frames
Dk
Dk
Recon
Scalar Quantizer
Turbo Encoder
Turbo Decoder
W
W
IDCT
DCT
Buffer
Request bits
Side information
Yk
For each transform band k
DCT
Y
Interpolation/ Extrapolation
Key frames
Conventional Intraframe coding
I
Conventional Intraframe decoding
I
Aaron, Zhang, Girod, Asilomar 2003
27Rate-Distortion Performance - Salesman
Encoder Runtime
Pentium 1.73 GHz machine
- Every 8th frame is a key frame
- Salesman QCIF sequence at 10fps
- 100 frames
Aaron, Zhang, Girod, Asilomar 2003
28Salesman at 10 fps
DCT-based Intracoding 149 kbps PSNRY30.0 dB
Wyner-Ziv DCT codec 152 kbps PSNRY35.6 dB
GOP8
Aaron, Zhang, Girod, Asilomar 2003
29Conclusion
- Increase efficiency of DVC
- Reduce H(X) simple ME/MC?
- Increase H(Y) better interpolation/extrapolation
- Stronger correlation between X and Y.
30Conclusion
- Distributed coding is a fundamentally new
paradigm for video compression - Slepian-Wolf encoding, is fundamentally harder
for practical applications due to the general
statistics of the correlation channel - The rate-distortion performance of Wyner-Ziv
coding does not yet reach the performance of
conventional interframe coder - It is unlikely that distributed video coding
algorithm will ever beat conventional video
coding schemes in R-D performance - Many authors believe that distributed coding
techniques will soon complement conventional
video coding to provide the best overall system
performance and enable novel applications
31- Research Plan (with M.S. Vidhya Murthy)
32Research Plan
Plan
Plan and achievements
done
Now
33