Title: Normal distribution
1Normal distribution
2(No Transcript)
3Properties of the normal distribution
- The center of the curve represents the mean (and
median and mode). - The curve is symmetrical around the mean.
- The tails meet the x-axis in infinity.
- The curve is bell-shaped.
- The area under the curve is 1 (by definition).
4Central Limit Theorem(Zentraler Grenzwertsatz)
Der Mittelwert der Mittelwerte verschiedener
Stichproben nähert sich dem wahren Mittelwert an.
Die Mittelwerte verschiedener Stichproben sind
normalverteilt, selbst wenn das zu untersuchende
Phänomen nicht normalverteilt ist.
5Central Limit Theorem(Zentraler Grenzwertsatz)
X1 X2 X3 X4 M
Sample 1 6 2 5 6 4.75
6Central Limit Theorem(Zentraler Grenzwertsatz)
X1 X2 X3 X4 M
Sample 1 6 2 5 6 4.75
Sample 2 2 3 1 6 3
7Central Limit Theorem(Zentraler Grenzwertsatz)
X1 X2 X3 X4 M
Sample 1 6 2 5 6 4.75
Sample 2 2 3 1 6 3
Sample 3 1 1 4 6 3
8Central Limit Theorem(Zentraler Grenzwertsatz)
X1 X2 X3 X4 M
Sample 1 6 2 5 6 4.75
Sample 2 2 3 1 6 3
Sample 3 1 1 4 6 3
Sample 4 6 2 2 1 2.75
9Central Limit Theorem(Zentraler Grenzwertsatz)
X1 X2 X3 X4 M
Sample 1 6 2 5 6 4.75
Sample 2 2 3 1 6 3
Sample 3 1 1 4 6 3
Sample 4 6 2 2 1 2.75
Sample 5 1 5 1 3 2.5
10Mean of the sample mean
4.75 3.0 3.0 2.75 2.5
3.2
5
11The sample means are normally distributed (even
if the phenomenon in the parent population is not
normally distributed).
12population
13population
sample
14population
one sample
mean of this sample
15population
one sample
mean of this sample
distribution of many sample means
16Are your data normally distributed?
- The distribution in the parent population
(normal, slightly skewed, heavily skewed). - The number of observations in the individual
sample. - The total number of individual samples.
17Graphical representation of probability
18Graphical representation of probability
19z scores
x1 x SD
20Empirical rule
21Empirical rule
1.96
22Parametric vs. non-parametrical tests
You use non-parametrical tests
- If you have ordinal data.
- If you have interval data that is not normally
distributed. - If you have interval data but cannot be certain
if your data is normally distributed because you
dont have sufficient data (e.g. small number of
samples, small individual samples).
23Confidence intervals
Confidence intervals indicate a range within
which the mean (or other parameters) of the true
population lies given the values of your sample
and assuming a certain probability.
The standard error is the equivalent of the
standard deviation for the sample distribution
(i.e. the distribution based on the sample means).
24Confidence intervals
- The mean of the sample means.
- The SDs of the sample means, i.e. the standard
error. - The degree of confidence with which you want to
state the estimation.
25Standard error
Samples Mean
1 2 3 4 5 1.5 1.8 1.3 2.0 1.7
? 8.3 / 5 1.66 (mean)
26Standard error
Samples Mean Individual means Mean of means
1 2 3 4 5 1.5 1.8 1.3 2.0 1.7 1.5 1.66 1.8 1.66 4 1.66 9 1.66 12 1.66
? 8.3 / 5 1.66 (mean)
27Standard error
Samples Mean Individual means Mean of means
1 2 3 4 5 1.5 1.8 1.3 2.0 1.7 1.5 1.66 1.8 1.66 4 1.66 9 1.66 12 1.66 0.16 0.14 0.36 0.36 0.04
? 8.3 / 5 1.66 (mean)
28Standard error
Samples Mean Individual means Mean of means squared
1 2 3 4 5 1.5 1.8 1.3 2.0 1.7 1.5 1.66 1.8 1.66 4 1.66 9 1.66 12 1.66 0.16 0.14 0.36 0.36 0.04 0.0256 0.0196 0.1296 0.1156 0.0016
? 8.3 / 5 1.66 (mean)
29Standard error
Samples Mean Mean Mean of means squared
1 2 3 4 5 1.5 1.8 1.3 2.0 1.7 1.5 1.66 1.8 1.66 4 1.66 9 1.66 12 1.66 0.16 0.14 0.36 0.36 0.04 0.0256 0.0196 0.1296 0.1156 0.0016
? 8.3 / 5 1.66 (mean) ? 0.292
30Standard error
0.292 5 - 1
0.2701
31Confidence interval
degree of certainty ? standard error
x sample mean /x confidence interval
32Confidence intervals
95 degree of certainty 1.96 z-score
Confindence interval of the first sample (mean
1.5) 1.96 ? 0.2701 0.53 1.5 /- 0.53
0.972.03 We can be 95 certain that the
population mean is located in the range between
0.97 and 2.03.
33Standard error (alternative formula)
SD
N
34Exercise
Mean 7
SD (2-7)2 (5-7)2 (6-7)2 (7-7)2 (10-7)2
(12-7)2 6 -1 3.58
Standard error 3.58 / ?6 1.46 Confidence
I. 1.46 ? 1.96 2.86 7 / 2.86 4.14
9.86