Title: Classical and Quantum Chaos in the SinaiAndreev billiard
1Classical and Quantum Chaos in the Sinai-Andreev
billiard
Andor Kormányos
Collaborators Zoltán Kaufmann (Eötvös
University) József Cserti (Eötvös
University) Colin Lambert (Lancaster University)
cond-mat/0506671
2 Outline of the talk
- Motivation less detailed knowledge of ballistic
N-S systems from quantum-chaos point of view - Classical dynamics in N-S hybrid systems and in
the Sinai-Andreev billiard - Quantum description and the quantal-classical
correspondence, Wigner transform - Wavefunctions
3Classical dynamics (1)
Andreev billiard (AB) normal dot
superconductor Andreev reflection conversion of
an electron of pepF v(1e/E F) to a hole of
phpF v(1 - e/E F) if elt? ( ? pair
potential) retracing approximation ? all AB
integrable
Silvestrov et al. Phys. Rev Lett. 90
116801 Adiabatically integrable
4 Classical dynamics (2)
In a more general case non-exact retracing
diffraction at the critical points destroys
the integrability for e?0 Poincaré section of
surface at the N-S interface
- chaotic sea
- intermittent-like motion
- integrable islands
5Quantum calculations and the Wigner function
QM description Bogoliubov-de Gennes equations
single-particle Hamiltonian
pair potential
Quantal-classical correspondence projection of
the Wigner function onto the PS
6Picture gallery chaotic states
scarred states
ergodic states
Z scaled probability density
7Picture gallery regular states
intermittent states
tori states
8Summary
M. C. Escher Order and Chaos