Title: Solving Triangles using the Law of Cosines
1Solving Triangles using the Law of Cosines
2District Objective 7-D
- Students will apply the Law of Cosines to solve
triangles - MA GSR 4 B 11
- MA GSR 4 A 12
- Concept map
3We have already discussed situations where the
Law of Sines applies to the given information.
- Such situations include
- ASA
- SAA
- SSA (the ambiguous case)
4- We will now discuss situations where the
- given information implies
- SAS
- SSS
5Suppose we are given
B
c 2
a
45
C
A
b 4
WE CANNOT USE LAW OF SINES!!!!! Sin A Sin B
Sin C a b
c The information does not fit!
6We Need the Law of Cosines!!!
- The Law of Cosines comes in 3 similar forms.
- 1) c² a² b² - 2ab cos C
- 2) b² a² c² -2ac cos B
- 3) a² b² c² -2bc cos A
7We can use a² b² c² -2bc cos A and find the
side length a
B
c 2
a
45
C
A
b 4
Substituting we obtain a² 4² 2² -2(4)(2) cos
(45) a²
16 4 16 ( .7071)
a² 20 11.3136
a² 8.6864
a approx. 2.95
8Now, we can use the Law of Sines to find angle C
B
Sin 45 Sin C 2.95
2 .7071 Sin C 2.95
2 Sin C approx. .4794 C approx 28.6
c 2
a 2.95
45
C
A
b 4
Since the sum of the angles totals 180, then B
106.4