Title: Fourier Transform
1Fourier Transform
2Fourier Transforms are used in
- X-ray diffraction
- Electron microscopy (and diffraction)
- NMR spectroscopy
- IR spectroscopy
- Fluorescence spectroscopy
- Image processing
- etc. etc. etc. etc.
3(No Transcript)
4(No Transcript)
5Fourier Transforms
- Different representation of a function
- time vs. frequency
- position (meters) vs. inverse wavelength
- In our case
- electron density vs. diffraction pattern
6What is a Fourier transform?
- A function can be described by a summation of
waves with different amplitudes and phases.
7(No Transcript)
8(No Transcript)
9Fourier Transform
If h(t) is real
10Discrete Fourier Transforms
- Function sampled at N discrete points
- sampling at evenly spaced intervals
- Fourier transform estimated at discrete values
- e.g. Images
- Almost the same symmetry properties as the
continuous Fourier transform
11DFT formulas
12Examples
13(No Transcript)
14(No Transcript)
15(No Transcript)
16(No Transcript)
17(No Transcript)
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25(No Transcript)
26(No Transcript)
27(No Transcript)
28(No Transcript)
29(No Transcript)
30(No Transcript)
31Properties of Fourier Transforms
- Convolution Theorem
- Correlation Theorem
- Wiener-Khinchin Theorem (autocorrelation)
- Parsevals Theorem
32Convolution
As a mathematical formula
Convolutions are commutative
33Convolution illustrated
34Convolution illustrated
?
35Convolution illustrated
36Convolution Theorem
- The Fourier transform of a convolution is the
product of the Fourier transforms - The Fourier transform of a product is the
convolution of the Fourier transforms
37Special Convolutions
Convolution with a Gauss function
Gauss function
Fourier transform of a Gauss function
38The Temperature Factor
39Convolution with a delta function
The delta function
The Fourier Transform of a delta function
40 41Correlation Theorem
42(No Transcript)
43(No Transcript)
44Autocorrelation
45Calculation of the electron density
x,y and z are fractional coordinates in the unit
cell 0 lt x lt 1
46Calculation of the electron density
47Calculation of the electron density
This describes F(S), but we want the electron
density We need Fourier transformation!!!!! F(hkl)
is the Fourier transform of the electron
density But the reverse is also true
48Calculation of the electron density
Because FFexp(ia)
I(hkl) is related to F(hkl) not the phase angle
alpha gt The crystallographic phase problem
49Suggested reading
- http//www.yorvic.york.ac.uk/cowtan/fourier/fouri
er.html and links therein - http//www.bfsc.leidenuniv.nl/ for the lecture
notes