Mitigating Computer Platform Radio Frequency Interference in Embedded Wireless Transceivers

About This Presentation
Title:

Mitigating Computer Platform Radio Frequency Interference in Embedded Wireless Transceivers

Description:

Develop offline and online algorithms. Approaches. Statistical modeling of RFI ... A. Spaulding and D. Middleton, 'Optimum Reception in an Impulsive Interference ... –

Number of Views:36
Avg rating:3.0/5.0
Slides: 9
Provided by: lori54
Category:

less

Transcript and Presenter's Notes

Title: Mitigating Computer Platform Radio Frequency Interference in Embedded Wireless Transceivers


1
Mitigating Computer PlatformRadio Frequency
Interference inEmbedded Wireless Transceivers
Preliminary Results
  • Prof. Brian L. Evans
  • The University of Texas at Austin
  • bevans_at_ece.utexas.edu

October 17, 2007
2
Computer Platform RFI
  • Clocks, clock harmonics, and busses generate RFI
  • Impulsive in nature (non-Gaussian)
  • Reduces communication performancefor embedded
    wireless data transceivers
  • Goals
  • Improve communication performancein presence of
    computer platform RFI
  • Develop offline and online algorithms
  • Approaches
  • Statistical modeling of RFI
  • Filtering/detection using estimation
    ofstatistical model parameters

Well be using interference and noise
interchangeably in this talk.
3
Statistical Models
  • Middleton Class A
  • Symmetric Alpha Stable

Power Spectral Density
Power Spectral Density
with a 1.5, d 0 and g 10
with A 0.15 and G 0.1
4
Middleton Class A Noise
Communication Performance
Class A ParametersA 0.35G 0.5 10-3
5
Symmetric Alpha Stable Noise
Communication Performance
SaS Parametersa 1.5d 0? 1
6
Symmetric Alpha Stable Noise
  • 80,000 data samples collected using 20 GSPS scope

Parameter Estimation Parameter Estimation
Localization (d) -0.0393
Dispersion (?) 0.5833
Characteristic Exponent (a) 1.5525
fX(x) - PDF
Normalized MSE 0.0055
x noise amplitude
7
Conclusion
  • Modeling computer platform RFI using impulse
    noise models promising
  • Middleton Class A 25 dB gain for BER 10-2
  • Symmetric Alpha Stable 5 dB gain for BER 10-1
  • Tractable parameter estimation algorithms
  • Middleton Class A iterative polynomial
    rooting
  • Symmetric Alpha Stable non-iterative
  • UT Austin RFI Mitigation Toolbox
  • http//www.ece.utexas.edu/bevans/projects/rfi
  • Research began January 2007 more to come!

8
References
  1. D. Middleton, Non-Gaussian noise models in
    signal processing for telecommunications New
    methods and results for Class A and Class B noise
    models, IEEE Trans. Info. Theory, vol. 45, no.
    4, pp. 1129-1149, May 1999.
  2. S. M. Zabin and H. V. Poor, Efficient estimation
    of Class A noise parameters via the EM
    algorithms, IEEE Trans. Info. Theory, vol. 37,
    no. 1, pp. 60-72, Jan. 1991.
  3. G. A. Tsihrintzis and C. L. Nikias, "Fast
    estimation of the parameters of alpha-stable
    impulsive interference", IEEE Trans. Signal
    Proc., vol. 44, Issue 6, pp. 1492-1503, Jun.
    1996.
  4. A. Spaulding and D. Middleton, Optimum Reception
    in an Impulsive Interference Environment-Part I
    Coherent Detection, IEEE Trans. Comm., vol. 25,
    no. 9, Sep. 1977.
  5. A. Spaulding and D. Middleton, Optimum Reception
    in an Impulsive Interference Environment-Part II
    Incoherent Detection, IEEE Trans. Comm., vol.
    25, no. 9, Sep. 1977.
  6. B. Widrow et al., Principles and Applications,
    Proc. of the IEEE, vol. 63, no.12, Sep. 1975.
  7. J. G. Gonzalez and G. R. Arce, Optimality of the
    Myriad Filter in Practical Impulsive-Noise
    Environments, IEEE Transactions on Signal
    Processing, vol 49, no. 2, Feb. 2001.
Write a Comment
User Comments (0)
About PowerShow.com