Title: EE532 Power System Dynamics and Transients
1EE532 Power System Dynamics and Transients
EUMP Distance Education Services
- Satish J Ranade
- Classical Analysis
- Numerical Solution Multi-machine Systems
- Lecture 5
2Equal Area CriterionExample 3(13.11)-Fault
2
1
8
3
The infinite bus receives 1 pu real power at 0.95
power factor lagging
A fault at bus 1 is cleared by opening lines from
1-3 and 2-3 Find critical clearing angle and
time
3Equal Area CriterionExample 3(13.11)-Fault
2
1
8
3
Find critical clearing angle and
time Approach Use EAC to find Critical clearing
angle Solve swing equation during fault --
can solve since Pe0 -- find time where
ddcrit In general case we will need to simulate
4Equal Area CriterionExample 3-Fault
1. Initial conditions
2
1
8
3
5Equal Area CriterionExample 3-Fault
1. Initial conditions
Data (Resistances are zero)
Xd0.3 Ztj0.1 Z1Z3j0.2 Z2j0.1 V81 pu
6Equal Area CriterionExample 3-Fault
Example 2
1. Initial conditions
I
1
2
jXd
Z1
Zt
V8 -
S
E -
Vt -
I
Z3
Z2
3
1. Initial
S(1/0.95)/acos(0.95) I(S/V8)
1.05/-18.2o Xeq (XdXt)X1(X2X3)0.52 pu
E/d V8 jXeq I 1.28/23.95o
7Equal Area CriterionExample 3-Fault
- 2. Events
- Prefault Steady State
- Fault three phase fault at bus 3
- Post fault Line 2-3 1-3 open
8Equal Area CriterionExample 3-Fault
3a. Pre-fault Power Angle curve
I
1
2
jXd
Z1
Zt
V8 -
S
E -
Vt -
I
Z3
Z2
3
Xeq (XdXt)X1(X2X3)0.52 pu E/d V8
jXeq I 1.28/23.95o V81/0 Pe E V8 sin d /Xeq
2.46 sin d Note d 23.95o Pe1
9Equal Area CriterionExample 3-Fault
3b. During-fault Power Angle curve
I
1
2
jXd
Z1
Zt
V8 -
S
E -
Vt -
I
Z3
Z2
3
Pe0
10Equal Area CriterionExample 3-Fault
3c. Post Fault Line 1-3 2-3 out
I
1
2
jXd
Z1
Zt
V8 -
S
E -
Vt -
I
3
Xeq .2.2.2
Pe E V8 sin d /Xeq 2.14 sin d
11Equal Area CriterionExample 3-Fault
Deceleration
4. Trajectories and areas
P
Pe
Acceleration
Pm
d
do
dcl
dclrdcrit
dmax
12EAC
P
Pe2.14sin(d)
Pm1
d
do
dclrdcrit
dmax
13CCT
14Time domain Simulation -- Generally cannot get
Analytical Solution to Swing equation
15First swing stability-Numerical Solution
Pm Pe
- A generator connected to an infinite bus through
a line. Initially PmPe
Stability is governed by the Swing Equation
Swing Equation Power Angle Equation
d2d/dt2 (pf/H) (Pm-Pe)
dd /dt ?-?syn
Pe E V sin (d) /(XXL)
16First swing stability-Numerical Solution
Nonlinear ODE in state variable form
d ? /dt (pf/H) (Pm-Pmax sin d)
dd /dt ?-?syn
PmaxEV/(XdXL)
Usually cannot get a closed form solution
17First swing stability-Numerical Solution
Numerical solution find d(t) and ?(t)
d ? /dt (pf/H) (Pm-Pmax sin d)
dd /dt ?-?syn
Divide time into intervals tn-2,tn-1,tn, Predic
t dn from dn-1, d n-2,
Step size
dn
dn-1
dn-2
tn-2 tn-1 tn t
18First swing stability-Numerical Solution
Numerical solution find d(t) and ?(t)
d ? /dt (pf/H) (Pm-Pmax sin d)
dd /dt ?-?syn
Euler Method Uniform time step h dn dn-1 h
dd/dtttn-1
dd/dtttn-1
dn-1
h
tn-1 tn-2 tn1 t
19First swing stability-Equal Area
CriterionApplication
- Establish initial conditions
- Define sequence of events and network for each
event - Develop Power angle curves
- SImulate
20First swing stability-Equal Area Criterion
Example 1
Stability under small change in mechanical power
A 10 MVA, 0.8 pf lagging, 4160 V, 60Hz,
three-phase generator supplies 50 rated power
at .8 pf lagging to a 4160 V infinite bus.
Determine if the generator is first-swing stable
if the prime mover power is increased by 10
21First swing stability-Numerical Solution-Small
change in Pm
22First swing stability-Numerical Solution-Small
change in Pm
23Equal Area Criterion-Small change in mechanical
power
EAC
Remember
24First swing stability-Numerical Solution-Small
change in Pm
The EAC in the previous slide says angle swings
to 9.77 deg and then swings back Oscillates
around the new equilibrium of 8.949 deg
( Step size of 0.001 is a little big
oscillation is growing Due to numerical
instability)
25First swing stability-Numerical Solution-Small
change in PmEffect of Damping Damper windings
provide relative speed damping. Other effects
provide absolute damping.This will make swing
settle
Swing equation with relative speed damping
d ? /dt (pf/H) (Pm-Pmax sin d-D (?- ?syn)
26Example 2-Fault
First swing stability-Numerical Solution-Fault
2
1
8
3
The infinite bus receives 1 pu real power at 0.95
power factor lagging
A fault at bus 3 is cleared by opening lines from
1-3 and 2-3 when the generator power angle
dReaches 40 deg. Is the system first swing
stable?
27Example 2-Fault
Apply EAC
P
Pe
Pm
d
dm
do
dcl
28First swing stability-Numerical Solution-Fault
29First swing stability-Numerical Solution-Fault
30Equal Area CriterionExample 2-Fault
Rotor swings to 55 degrees then swings back-
STABLE
P
Pe
Pm
d
do
dcl
dm
55 40 24
23.95 40 55
31First swing stability-Numerical Solution-Fault
tgttrict.35
32Equal Area CriterionExample 2-Fault
Rotor swings past 156 degrees UN STABLE
P
Pe
Pm
d
do
dcl
dm
156 120 24
23.95 40 55
33Equal Area CriterionExample 2-Fault- Critical
Clearing
Rotor swings past 156 degrees UN STABLE
P
Pe
Pm
d
d0 d1
dmp- d1
dcl112.9
23.95
156 112 24
34Stability of Numerical Solutions
- Can become unstable due to
- Roundoff
- Approximation
dd/dtttn-1
Approximation Error
dn-1
h
tn-1 tn-2 tn1 t
35Stability of Numerical Solutions
- Can control
- Roundoff ( Reduce airthmetic operations)
- Approximation(Use more advanced method, but will
increase arithmetic operations) - Need to chose a reasonable step size ( or
adaptively vary step size) - Numerical stability Means the the global error
remains bounded - (See Crows Text for EE531/ Also see Kundur)
36Stability of Numerical Solutions
For the small change in Pm(Example 1) Euler is
unstable even with h.001
Note x- axis units n h time in seconds
37Additional Methods
- Taylor Series-based Second order method
First Estimate
Slope 1
Slope 2
Final Estimate
Estimated
Actual
h
Average
38Additional Methods
Modified Euler Example for Fault Case
(Glover/Sarma p.626)
2
1
8
3
The infinite bus receives 1 pu real power at 0.95
power factor lagging
A fault at bus 3 is cleared by opening lines from
1-3 and 2-3 when the generator power angle
dReaches 40 deg. Is the system first swing
stable?
39Additional Methods
Modified Euler Example for Fault Case
Notation Revisited dx/dt f(x,t)
d2d/dt2 (pf/H) (Pm-Pe)
Swing Equation Power Angle Equation
dd /dt ?-?syn
Pe E V sin (d) /(XdXL)
Time t n h nstep number h step size
40Additional Methods
Modified Euler Example for Fault Case
41Additional Methods
Modified Euler Example for Fault Case
42Additional Methods
Modified Euler Example for Fault Case
43Additional Methods
Compare Euler Example for Fault Case h0.01