Title: SKYNET
1Vision-Guided RobotPosition Control
Tony Baumgartner Computer Science Jeff Clements
Mechanical Engineer Norman Pond Electrical
Engineer Brock Shepard Mechanical
Engineer Nicholas Vidovich Computer Engineer
Advisors Dr. Juliet Hurtig Dr. J.D. Yoder
May 4, 2004
2Problem Identification
3Equipment Provided
- Desktop computer
- Two CCD (Charge-Coupled Device ) cameras
- ABB Robot
- Controller
4Robot
ABB Articulated IRB 140
5Controller
ABB - S4CPlus
6Design Deliverables
- Development Completion Date
- Difference Algorithm 12/19/03
- Image Processing 02/02/04
- Object Recognition 02/02/04
- User Interface 02/20/04
- Robot Communication 03/15/04
- Overall
- Gripper Implementation 02/02/04
- Testing 04/30/04
7Software Block Diagram
8Object Recognition Algorithms
- Shape-Based Matching
- Thresholding
- Blob Detection
- Pattern Recognition
- Similarity Measure
9Object Recognition VisualsNo Object in Scene
10Object Recognition VisualsReference Points Enter
Scene
11Object Recognition VisualsObject Enters Scene
12Object Recognition VisualsShowing Blobs
13Object Recognition VisualsFinding Blobs
14Other Object Recognition Visuals
15Other Object Recognition VisualsShow Lines
Enabled
16Axis Offset
17Camera Axis
18Calculating Image Angles/Distances
- ?x tan-1 ((x2 - x1 ) / (y2 - y1))
- ?y tan-1 ((y3 - y1) / (x3 - x1))
- ?1 p/2 ?x ?y
- pxDistanceBetweenRefs v(y2 - y1)2 (x2 - x1)2
- pxDistanceRefOneToObj v(y3 - y1)2 (x3-x1)2
19Robot Axis
20Calculating Robot Angles/Distances
- ?a tan-1((x2 x1) / (y2 y1))
- ?b p/2 ?a ?1
- mmDistanceBetweenRefs v(y2 - y1)2(x2 - x1)2
- mmtopxRatio mmDistanceBetweenRefs /
pxDistanceBetweenRefs - mmDistanceRefOneToObj mmtopxRatio
pxDistanceRefOneToObj
21Robot Coordinates
- Xr1Obj r cos ?
- Yr1Obj r sin ?b
- XObj x1 Xr1Obj
- YObj y1 Yr1Obj
22Testing
- Testing included
- A protruding device from TCP
- Measuring stick (millimeter)
- 10 different reference points
- 4 different object positions
- 2 positions per quadrant
- Maximum Error 3 mm
- Average Error lt 2 mm
23Future Considerations
- Implement 3D
- Improve camera resolution to improve accuracy
- Implement improved object recognition algorithms
- Add mechanical style gripper
- Optimize softwares system resource usage
24QUESTIONS
?
25References
- lt1gt ABB Product Specification Sheet (2003)
- lt2gt Lin, C.T., Tsai D.M. (2002) Fast normalized
cross correlation for defect detection. Machine
Vision. Yuan-Ze University,1-5. - lt3gt Phil Baratti Robot Precision (personal
communication, November 4 - 2003)
- lt4gt Stegar, C.., 2001. Similarity measures for
occlusion, clutter, and - illumination invariant object recognition. In
B. Radig and S. Florczyk(eds), Mustererkennung
2001, Springer Munchen, pp. 145-154. - lt5gt Stegar, C., Ulrich, M. 2002 Performance
Evaluation of 2D Object - Recognition Techniques. Technical Report
Technische Universitat Munchen, 1-15. - lt6gt Robots and Manufacturing Automation, pg.
220-222. - lt7gt http//www.prip.tuwien.ac.at/Research/RobotVis
ion/vs.html