Digital Sampling for Bird Radar - PowerPoint PPT Presentation

1 / 34
About This Presentation
Title:

Digital Sampling for Bird Radar

Description:

Spartan XSA-100. 8M x 16 SDRAM -- columns: 512 -- rows: 4096 -- banks: 4 ... professional manufacturing of Spartan II chip, SDRAM, and A/D on one board ... – PowerPoint PPT presentation

Number of Views:52
Avg rating:3.0/5.0
Slides: 35
Provided by: rda84
Category:

less

Transcript and Presenter's Notes

Title: Digital Sampling for Bird Radar


1
Digital Sampling for Bird Radar
  • ECE 345
  • Project Group 20
  • Ryan Dawson
  • Megan Yuill
  • Cliff Kucharski

2
Introduction
  • Prof. Larkin uses a mobile radar unit to track
    migrating birds, insects, etc.
  • Radar emits 3 beam for 0.08 µs when a trigger
    pulse is issued
  • A trigger pulse is received every 476 µs
  • Current A/D Measurement Computing PCI-DAS4020/12
  • --- 12 Bits
  • --- 20 MHz maximum 1 kHz minimum
  • Radar Resolution 7.5 m

3
Radar Operation
4
Current Set-up
5
Problems
  • Currently the number of samples recorded by the
    DAQ
  • computer cannot be chosen by the user
  • Data approximately 2-3 km from the radar is too
    distorted for use due to the inverse square law
  • --- Therefore, a signal twice as far from radar
    will be ¼ the intensity

6
Objectives
  • Give the user the ability to choose the number of
    samples recorded after each trigger pulse
  • Let the system operate with the A/D running
    continuously

7
Original Idea
8
New Problems
  • Unable to access sampled data from Prof. Larkins
    A/D through the digital outputs
  • Digital Samples only available on the PCI Bus
  • Decided trying to access data on the PCI bus
    would be too invasive for Professor Larkins setup

9
New Solutions
  • Decided to get a new A/D chip
  • Specifications for new A/D
  • -- minimum of 20 Msamples/s
  • -- 12 bit data resolution
  • -- TTL compatible

10
Updated Design
11
First A/D Choice
  • Linear Systems LTC 1745
  • 12-bit
  • 25 MHz
  • Better resolution than with Prof. Larkins A/D
  • 6m versus 7.5m

12
LTC1745 Problems
  • Too small for the machine shop to mount on a PCB
    board.
  • Need 10 mils between pads
  • 1 mil 0.0254 mm
  • LTC1745 has 7.09 mils between pads

13
Texas Instruments ADS801
  • 25 MHz sampling rate
  • 5V typical supply voltage
  • 6V maximum supply voltage
  • 54 mA typical supply current
  • 65 mA maximum supply current
  • -40C to 85C specified temperature range

14
Input Circuit for ADS801
  • For use with a single-ended input
  • 0.25V to 4.25V rated
  • 0.4V to 4.2V actual

15
Spartan XSA-100
  • 8M x 16 SDRAM
  • -- columns 512
  • -- rows 4096
  • -- banks 4
  • 100 MHz programmable oscillator
  • Parallel port
  • 7-segment LED
  • 84-pin prototyping interface
  • 9V DC power jack
  • 5V / 3.3V / 2.5V regulators
  • Downloading cable

16
Safety Circuit
17
How does the logic work?
  • FPGA logic is composed of the following elements
  • one 12 bit shift register
  • -- shifts in a 12 bit binary number
  • two 12 bit comparators
  • -- outputs logic1 when both 12 bit inputs are
    equal, logic0 otherwise
  • two 12 bit counters, one 9 bit counters, one 2
    bit counter
  • -- increments with positive-edge of a clock
    signal when enabled
  • sdram controller
  • control unit
  • 2 clock dividers

18
VHDL
19
State Diagram
20
PC Program
  • PC pseudo-code.
  • Main()
  • initialize FPGA
  • string date data or filename from user
  • int sampleNum number of samples entered by
    user
  • int endaddr (sampleNum128)1
  • int cycleNum 0
  • while(keyboard is not hit)
  • // Set Register
  • for(int i 12 i gt 0 i--)
  • shift in next significant binary value from
    sampleNumber
  • send StartSampling signal to FPGA

21
PC Side Program
  • Microsoft Visual Studio C

22
Final Circuit
23
VHDL Development and Testing
  • Used Xilinx Webpack 6.2
  • -- VHDL design
  • ModelSim
  • -- Simulation/Troubleshooting
  • GXS Tools
  • -- Bring up on FPGA

24
VHDL Simulation Waveforms
25
A/D Verification
  • Externally clocked with a 3.3 Volt peak to peak,
    frequencies ranging from 1 kHz-20 MHz, square
    wave, DC offset of 1.6 V
  • Input different waveforms
  • -- AC signal needed DC offset
  • Check voltage of input and output pins
  • -- generally a logic high was around 2.25 V- 3V
  • Used a set of 12 LEDs to see if certain digital
    outputs are not flashing

26
Triangular Wave Data
  • 2 Volts Peak to Peak
  • 0.5 Hz
  • 1000000000700070007000700070006E006E006E76
  • 10001000006E006E00720072007200720072006268
  • 1000200000200020002000200020002000200020D0
  • 1000300000200020002000200020002000200020C0
  • 1000400000200020002000200020002000200020B0
  • 1000500000200020002000200020002000200020A0
  • 1000600000310031003100360036003600360036EF
  • 100070000033003300330033003300340034003FDA
  • 1000800000FC00F600F200F200F200F200FA00F8C4
  • 1000900000F800F800F800F800F500F500F501237D
  • 1000A00001AE01AE01AE03FA03FA01AD01AD01AD3F
  • 1000B00001AD01AD01AD01AD01AD01A501A501BFCE
  • 1000C0000270027002760276027602760276027B77
  • 1000D000027B027B027B027B02660266026602B63C
  • 1000E0000360036003330333033303330333033306
  • 1000F0000333033303330333033503350335036716
  • 10010000042B042B042B042B042B042C042C06603E
  • 100110000667042C04280428042804280428043929
  • 1001200004F104F104F104F704F604F604F604F60D

27
Square Wave Data
  • 2 Volts peak to peak, 0.5 Hz
  • 1000000006E706E706E706EA06EA06EA06EA06EA79
  • 1000100006EC06EC06EC06EC06EC06E806E806EB59
  • 1000200006FF06FF06FF06FF06FF06F606F606F6C3
  • 1000300006F606F606E506E506E506E506E506E645
  • 1000400006FD06FD06FD06FD06FB06FB06FB06FBA0
  • 10005000042606E006ED06ED06ED06ED06F606EBD7
  • 1000600006EC06EC06EC06FC06F406F406F406F4D0
  • 1000700006F406E706E706E706E706E706F106F0F8
  • 1000800006EA06EA06EA06F406F406F406F406F4BE
  • 1000900006EF06EF06EF06EF06EF06E206E206EFD2
  • 1000A00006F406F406F406F406F406F406F406F480
  • 1000B00006F406EF06EF06EF06EF06EF06EF06E59D
  • 1000C00021300570073006F306F306F306F306F059
  • 1000D00006F006F006F006F006EF06EF06EF06EC77
  • 1000E00006F706F506F506F506F506F506EB06EB4A
  • 1000F00006EB06EB06EB06EF06EF06EF06EF06E96A
  • 1001000006F606F306F306F306F306F306EE06EE2E
  • 1001100006EE06EE06EE06FB06FB06FB06FB06F306
  • 1001200006F606F606F606F606F606EF06EF06EF04

28
Lab Testing
2 Volt Peak to Peak Square Wave, 0.5 Hz, 1.25 DC
offset Digital Representation of Input Voltage
(DataValue/4096)(Peak to Peak Voltage) (DC
offset 0.5(Peak to Peak Voltage))
29
Obstacles
  • Clocking difficulties
  • Programmable I/O difficulties
  • On A/D, certain digital output signals were
    unreliable
  • _Inp() function call in windows XP
  • FPGA unpredictable

30
Conclusions
  • More demanding engineering was required than
    originally anticipated
  • OUR DESIGN WORKED !!
  • However, certain components were too unreliable
    for use on a regular basis

31
Cost
Part Cost Number Used Total Cost

XSA-100 250.00 1 250.00
ADS801 12.55 1 12.55
parallel cable 15.00 1 15.00
fuse 0.50 1 0.50
zener diode 0.50 1 0.50
0.1 uF Capacitor 0.10 1 0.10
22 pF Capacitor 0.10 1 0.10
50 ohm Resistor 0.10 1 0.10

Total Parts Cost Total Parts Cost 278.85
32
Recommendations/Improvements
  • different FPGA
  • professional manufacturing of Spartan II chip,
    SDRAM, and A/D on one board
  • Remove extra circuitry for more efficient use

33
Acknowledgements
  • We would like to thank the following
  • ----- Professor Larkin ----- Greg
    Sorenson
  • ----- Professors Carney and Swenson
  • ----- Texas Instruments and Linear
    Systems for free samples
  • ----- Jim Wehmer

34
Questions ???????
Write a Comment
User Comments (0)
About PowerShow.com