Logic Design Basic III - PowerPoint PPT Presentation

1 / 17
About This Presentation
Title:

Logic Design Basic III

Description:

Series-parallel implementation. 2-gate delay. Koling Chang - ECS154A - Fall 2003. Page 10 ... BC . AC. Koling Chang - ECS154A - Fall 2003. Page 12 ... – PowerPoint PPT presentation

Number of Views:29
Avg rating:3.0/5.0
Slides: 18
Provided by: KC96
Category:
Tags: iii | basic | bc | design | logic | series

less

Transcript and Presenter's Notes

Title: Logic Design Basic III


1
Logic Design Basic III
  • Instructor Koling Chang
  • email kchang_at_cs.ucdavis.edu

2
Outline
  • Logic function simplification (cont.)
  • Quine-McCluskey Method
  • Generalized Gates
  • Using Other Gates

3
Quine-McCluskey Method
  • Simplification involves two steps
  • Obtain a simplified expression
  • Essentially uses the following rule
  • X Y X Y X
  • This expression need not be minimal
  • Next step eliminates any redundant terms
  • Eliminate redundant terms from the simplified
    expression in the last step
  • This step is needed even in the Karnaugh map
    method

4
Quine-McCluskey Method (cont.)
  • Steps to find prime implicants
  • group minterms with same number of 1s.
  • eliminate terms using the Simplification Law
  • XYXY X
  • between neighboring groups and generate new
    neighboring groups.
  • repeat until this law can not be applied.

5
Quine-McCluskey Method (cont.)
  • Example
  • f(a,b,c,e) S (0,1,2,5,6,7,8,9,10,14)
  • Column I Column II Column III
  • group 0 0 0000 0,1 000- 0,1,8,9 -00-
  • group 1 1 0001 0,2 00-0 0,2,8,10 -0-0
  • 2 0010 0,8 -000 0,8,1,9 -0-0 X
  • 8 1000 1,5 0-01 0,8,2,10 -0-0 X
  • group 2 5 0101 1,9 -001 2,6,10,14 --10
  • 6 0110 2,6 0-10 2,10,6,14 --10 X
  • 9 1001 2,10 -010
  • 10 1010 8,9 100-
  • group 3 7 0111 8,10 10-0
  • 14 1110 5,7 01-1
  • 6,7 011-
  • 6,14 -110
  • 10,14 1-10

6
Quine-McCluskey Method (cont.)
  • f acd abd abcbc bd cd
  • Can you simplify this function using consensus
    theorem?
  • XYYZXZ XYXZ
  • b(ad)(ad)cbc badbc
  • d(ab)(ab)cdc dabdc
  • cbbdcd cbcd
  • f abdbccd

7
Quine-McCluskey Method (cont.)
  • Prime Implicant Chart
  • 0 1 2 5 6 7 8 9 10 14
  • (0,1,8,9) bc X X X X
  • (0,2,8,10) bd X X X X
  • (2,6,10,14) cd X X X X
  • (1,5) acd X X
  • (5,7) abd X X
  • (6,7) abc X X

8
Generalized Gates
  • Multiple input gates can be built using smaller
    gates
  • Some gates like AND are easy to build
  • Other gates like NAND are more involved

9
Generalized Gates (cont.)
  • Various ways to build higher-input gates
  • Series
  • Series-parallel
  • Propagation delay depends on the implementation
  • Series implementation
  • 3-gate delay
  • Series-parallel implementation
  • 2-gate delay

10
Multiple Outputs
  • Two-output function
  • A B C F1 F2
  • 0 0 0 0 0
  • 0 0 1 1 0
  • 0 1 0 1 0
  • 0 1 1 0 1
  • 1 0 0 1 0
  • 1 0 1 0 1
  • 1 1 0 0 1
  • 1 1 1 1 1
  • F1 and F2 are familiar functions
  • F1 Even-parity function
  • F2 Majority function
  • Another interpretation
  • Full adder
  • F1 Sum
  • F2 Carry

11
Implementation Using Other Gates
  • Using NAND gates
  • Get an equivalent expression
  • A B C D A B C D
  • Using de Morgans law
  • A B C D A B . C D
  • Can be generalized
  • Majority function
  • A B B C AC A B . BC . AC

12
Implementation Using Other Gates (cont.)
  • Majority function

13
Implementation Using Other Gates (cont.)
  • Bubble notation for even-parity function

14
Implementation Using Other Gates (cont.)
  • Using XOR gates
  • More complicated
  • A XOR B AB AB
  • Even-parity example
  • ABC ABC ABC ABC
  • C(ABAB) C (AB AB)
  • C(ABAB) C (ABAB)
  • C(ABAB) C (ABAB)

15
Proof of Last Two Lines
  • (abab)
  • (ab) (ab)
  • (a b ) (ab)
  • aa ab ba bb 0 ab ba 0
  • ab ba

16
Implementation Using Other Gates (cont.)
  • Using XOR gates
  • More complicated

17
Proof of F2
  • F2 BC AB AC
  • BC AB(CC) AC(BB)
  • BC ABC ABC ABC ABC
  • BC A( BC BC)
Write a Comment
User Comments (0)
About PowerShow.com