Title: Quarks in the Quark-Gluon Plasma
1Tokyo Univ., Sep. 27, 2007
Lattice Study of
Quarks in the Quark-Gluon Plasma
Masakiyo Kitazawa (Osaka Univ.)
F. Karsch and M.K., arXiv0708.0299
2 QGP Phase near Tc
RHIC experiments
- strong collective behavior ? perfect fluid?
Lattice simulations
- critical temperature
- energy density
- charmonium spectra
M. Cheng, et al., PRD74,054507 (06). Y. Aoki, et
al., PLB643,46 (06).
Asakawa, Hatsuda, PRL92,012001 (04). Datta,
Karsch, Petreczky, PRD69,094507 (04). Umeda,
Nomura Matsufuru, EPJC39S1,9 (05).
3 Why Quark ?
4 Why Quark ?
Study of property of quark in lattice
Z(p)
vacuum
Bowman, Heller, Williams, Zhang, Coad ,
Leinweber, Furui, Nakajima,
Bowman et al.
M(p)
finite T
a paper and 2 proceedings.
- Boyd, Gupta, Karsch NPB 385,481(92).
- Petreczky, Karsch, Laermann, Stickan, Wetzorke,
NPPS106,513(02). - Hamada, Kouno, Nakamura, Saito, Yahiro,
hep-ph/0610010.
5 Quarks at Extremely High T
- Hard Thermal Loop approx. ( p, w, mqltltT )
- 1-loop (gltlt1)
Klimov 82, Weldon 83 Braaten, Pisarski 89
- Gauge independent spectrum
w / mT
plasmino
- 2 collective excitations
- having a thermal mass
- The plasmino mode has
- a minimum at finite p.
p / mT
6 Decomposition of Quark Propagator
Free quark with mass m
HTL ( high T limit )
7 Decomposition of Quark Propagator
Free quark with mass m
HTL ( high T limit )
8 Quark Spectrum as a function of m0
Quark propagator in hot medium at T gtgtTc
- as a function of bare scalar mass m0
9 Fermion Spectrum in QED Yukawa Model
Baym, Blaizot, Svetisky, 92
Yukawa model
1-loop approx.
Spectral Function for g 1 , T 1
thermal mass mTgT/4
single peak at m0
Plasmino peak disappears as m0 /T becomes larger.
cf.) massless fermion massive boson M.K.,
Kunihiro, Nemoto,06
10 Quark Propagator in Quenched Lattice
quenched approx.
Configurations are distributed with a weight
exp(-SG).
fermion matrix
in continuum
Wilson fermion
We can calculate quark propagator with various
m0 for a given set of gauge(-fixed) configuration!
11 Correlator and Spectral Function
dynamical information
observable in lattice
12 Simulation Setup
- quenched approximation
- clover improved Wilson
- Landau gauge fixing
T b Nt Lattice size
1.5Tc 6.64 12 483x12, 363x12
6.87 16 643x16, 483x16
3Tc 7.19 12 483x12, 363x12
7.45 16 643x16, 483x16
- vary bare quark mass m0
- see only zero momentum p0
configurations generated by Bielefeld
collaboration
- 2-pole approx. for r(w,p0)
- wall source
13 Choice of Source
Whats the source?
Wall source, instead of point source
point
wall
point
t
- same (or, less) numerical cost
- quite effective to reduce noise!!
wall
t
the larger spatial volume, the more effective!
14 Exercise 1 Dirac Structure of C(t )
quark propagator
p0
even odd
15 Exercise 2 C(t ) and r (w )
w
E
0
16 Exercise 2 C(t ) and r (w )
w
E
0
17 Correlation Function
643x16, b 7.459, k 0.1337, 51confs.
t /T
- We neglect 4 points near the source from the fit.
- 2-pole ansatz works quite well!! ( c 2/dof.2 in
correlated fit)
18 m0 Dependence of C(t )
kc0.13390 in vacuum
m0 small
k 0.134
k 0.132
m0 large
k 0.130
t /T
- Shape of C(t) changes from chiral symmetric
- to single pole structures.
19 m0 Dependence of C(t )
kc0.13390 in vacuum
m0 small
k 0.134
k 0.132
m0 large
k 0.130
t /T
- Shape of C(t) changes from chiral symmetric
- to single pole structures.
20 Spectral Function
T 3Tc 643x16 (b 7.459)
T3Tc
E2
E / T
w m0 pole of free quark
E1
Z2 / (Z1Z2)
m0 / T
21 Spectral Function
T 3Tc 643x16 (b 7.459)
T3Tc
E2
E / T
w m0 pole of free quark
E1
Z2 / (Z1Z2)
m0 / T
- Limiting behaviors for
are as expected. - Chiral symmetry of quark propagator restores
around m00. - E2gtE1 qualitatively different from the 1-loop
result.
22 Temperature Dependence
643x16
E2
E / T
E1
Z2 / (Z1Z2)
m0 / T
- mT /T is insensitive to T.
- The slope of E2 and minimum of E1 is much clearer
at lower T.
23 Lattice Spacing Dependence
T3Tc
E2
643x16 (b 7.459) 483x12 (b 7.192)
E / T
E1
same physical volume with different a.
m0 / T
- No lattice spacing dependence within statistical
error.
24 Spatial Volume Dependence
T3Tc
E2
643x16 (b 7.459) 483x16 (b 7.459)
E / T
E1
same lattice spacing with different aspect ratio.
m0 / T
- Excitation spectra have clear volume dependence
- even for Ns /Nt 4.
25 Extrapolation of Thermal Mass
Extrapolation of thermal mass to infinite spatial
volume limit
T1.5Tc
mT /T 0.800(15) mT 322(6)MeV
mT /T
1.5Tc
T3Tc
3Tc
643x16
483x16
mT /T 0.771(18) mT 625(15)MeV
- Small T dependence of mT/T,
- while it decreases slightly with increasing T.
- Simulation with much smaller Nt /Ns is desireble.
26 Effect of Dynamical Quarks
Quark propagator in quench approximation
In full QCD,
? screen gluon field ? suppress mT?
? meson loop ? will have strong effect
if mesonic excitations exist
massless fermion massive boson ? 3 peaks in
quark spectrum! M.K., Kunihiro,
Nemoto, 06
27 Summary
Excitations of quark degrees of freedom near but
above Tc have a simple excitation spectrum
having a plasmino mode and mT!
Lattice simulation can successfully analyze it.
- Thermal gluon field gives rise to the thermal
mass in the light quark spectra. - The plasmino mode disappears for heavy quarks.
- The ratio mT/T is insensitive to T near Tc.
Puzzles
- different behavior from 1-loop result.
- strong spatial volume dependence of
- thermal mass.
Future Work
finite momentum / gauge dependence / TTc T
gtgtTc full QCD / gluon propagator /