Title: Difference of Angles
1Difference of Angles
- Cosine and Sine
- The Proof
- Just sit back and enjoy the ride!
2Difference of Angles
a
?
Assume we are on the unit circle.
3Difference of Angles
a - ?
a
?
Assume we are on the unit circle.
4Difference of Angles
( cos (a ?) ,sin (a ?) )
( cos (a) ,sin (a) )
( cos (?) ,sin (?) )
a - ?
a
?
Assume we are on the unit circle.
5Difference of Angles
a (a ?) ?
( cos (a ?) ,sin (a ?) )
( cos (a) ,sin (a) )
( cos (?) ,sin (?) )
?
a - ?
a
?
Assume we are on the unit circle.
6Difference of Angles
( cos (a ?) ,sin (a ?) )
( cos (a) ,sin (a) )
( cos (?) ,sin (?) )
?
a - ?
a
?
(1,0)
Assume we are on the unit circle.
7Distance squared ( cos(a) cos(a ?) )2
(sin(a) - sin (a ?) )2
( cos (a ?) ,sin (a ?) )
( cos (a) ,sin (a) )
( cos (?) ,sin (?) )
?
a - ?
a
?
(1,0)
Distance squared (cos (?) 1)2 (sin (?) 0 )
2
They are the same!!
Assume we are on the unit circle.
8Set distances equal and simplify
- ( cos(a) cos(a ?) )2 (sin(a) - sin (a ?)
)2 (cos (?) 1)2 (sin (?) 0 ) 2 - cos2(a) 2cos(a)(cos(a ?) cos2(a ?) sin
2(a) - 2sin(a)sin(a ?) sin2(a ?) - cos2(?) 2cos(?) 1 sin2(?)
9Set distances equal and simplify
- ( cos(a) cos(a ?) )2 (sin(a) - sin (a ?)
)2 (cos (?) 1)2 (sin (?) 0 ) 2 - cos2(a) 2cos(a)(cos(a ?) cos2(a ?) sin
2(a) - 2sin(a)sin(a ?) sin2(a ?) - cos2(?) 2cos(?) 1 sin2(?)
-
- 1
10Set distances equal and simplify
- ( cos(a) cos(a ?) )2 (sin(a) - sin (a ?)
)2 (cos (?) 1)2 (sin (?) 0 ) 2 - cos2(a) 2cos(a)(cos(a ?) cos2(a ?) sin
2(a) - 2sin(a)sin(a ?) sin2(a ?) - cos2(?) 2cos(?) 1 sin2(?)
-
- 1 1
11Set distances equal and simplify
- ( cos(a) cos(a ?) )2 (sin(a) - sin (a ?)
)2 (cos (?) 1)2 (sin (?) 0 ) 2 - cos2(a) 2cos(a)(cos(a ?) cos2(a ?) sin
2(a) - 2sin(a)sin(a ?) sin2(a ?) - cos2(?) 2cos(?) 1 sin2(?)
-
- 1 1 2cos(a)(cos(a ?) - 2sin(a)sin(a ?)
cos2(?) 2cos(?) 1 sin2(?) -
12Set distances equal and simplify
- ( cos(a) cos(a ?) )2 (sin(a) - sin (a ?)
)2 (cos (?) 1)2 (sin (?) 0 ) 2 - cos2(a) 2cos(a)(cos(a ?) cos2(a ?) sin
2(a) - 2sin(a)sin(a ?) sin2(a ?) - cos2(?) 2cos(?) 1 sin2(?)
-
- 1 1 2cos(a)(cos(a ?) - 2sin(a)sin(a ?)
cos2(?) 2cos(?) 1 sin2(?) -
13Set distances equal and simplify
- ( cos(a) cos(a ?) )2 (sin(a) - sin (a ?)
)2 (cos (?) 1)2 (sin (?) 0 ) 2 - cos2(a) 2cos(a)(cos(a ?) cos2(a ?) sin
2(a) - 2sin(a)sin(a ?) sin2(a ?) - cos2(?) 2cos(?) 1 sin2(?)
-
- 1 1 2cos(a)(cos(a ?) - 2sin(a)sin(a ?)
cos2(?) 2cos(?) 1 sin2(?) - 1 1 2cos(a)(cos(a ?) - 2sin(a)sin(a ?)
1 -
14Set distances equal and simplify
- ( cos(a) cos(a ?) )2 (sin(a) - sin (a ?)
)2 (cos (?) 1)2 (sin (?) 0 ) 2 - cos2(a) 2cos(a)(cos(a ?) cos2(a ?) sin
2(a) - 2sin(a)sin(a ?) sin2(a ?) - cos2(?) 2cos(?) 1 sin2(?)
-
- 1 1 2cos(a)(cos(a ?) - 2sin(a)sin(a ?)
cos2(?) 2cos(?) 1 sin2(?) - 1 1 2cos(a)(cos(a ?) - 2sin(a)sin(a ?)
1 2cos(?) 1 -
2 2cos(a)(cos(a ?) - 2sin(a)sin(a ?) 2
2cos(?) 2cos(a)(cos(a ?) - 2sin(a)sin(a
?) 2cos(?) cos(a)(cos(a ?)
sin(a)sin(a ?) cos(?)
15 Formula for cosine
cos(a)(cos(a ?) sin(a)sin(a ?)
cos(?)
16Difference Formula for cosine
- cos(a)(cos(a ?) sin(a)sin(a ?) cos(?)
- If ß a ? and ? a ß
- And by substitution we get
- cos(a)cos(ß) sin(a)sin(ß) cos(a - ß)
-
17Difference Formula for cosine
cos(a)cos(ß) sin(a)sin(ß) cos(a - ß )
18Sum Formula for cosine
- cos(a)cos(ß) sin(a)sin(ß) cos(a - ß )
- cos(a)cos(-ß) sin(a)sin(-ß) cos(a (- ß) )
- cos(a)cos(ß) - sin(a)sin(ß) cos(a ß )
-
19Sum formula for sine
- cos(a)cos(ß) sin(a)sin(ß) cos(ß a)
- sin(x)cos(x-?/2)and sin(a-?/2)-cos(a)
- Now, we get
- sin(ß a) cos(ß a - ?/2 )
20Sum formula for sine
- cos(a)cos(ß) sin(a)sin(ß) cos(ß a)
- sin(a)cos (a-?/2)and sin(a-?/2)-cos(a)
- Now, we get
- sin(ß a) cos(ß (a - ?/2))
- By sum formula for cosine
- sin(ß a) cos(a ?/2)cos(ß) sin(a
?/2)sin(ß) - sin(ß a) sin(a)cos(ß) cos(a)sin(ß)
21Sum formula for sine
sin(ß a) sin(a)cos(ß) cos(a)sin(ß)
22Difference formula for sine
- sin(ß a) sin(a)cos(ß) cos(a)sin(ß)
- sin(ß - a) sin(-a)cos(ß) cos(-a)sin(ß)
- sin(ß - a) - sin(a)cos(ß) cos(a)sin(ß)
- Because sine is an odd function
- And cosine is an even function
- So
- sin(ß - a) sin(ß )cos(a) - cos(ß)sin(a)
23Formulas
- cos(ß a) cos(a)cos(ß) sin(a)sin(ß)
- sin(ß a) sin(a)cos(ß) cos(a)sin(ß)
- sin(ß - a) sin(a)cos(ß) - cos(a)sin(ß)
- cos(ß - a) cos(a)cos(ß) sin(a)sin(ß)
24Double Angle
- cos(a a) cos(a)cos(a) sin(a)sin(a)
- cos(2a) cos2(a) sin2(a)
- sin(a a) sin(a)cos(a) cos(a)sin(a)
- sin(2a) 2sin(a)cos(a)
25Dont memorize them all
- Just know the double angle formulas
- cos(2x) is almost pythagorean thm
- cos(2x) cos2(x) sin2(x)
- If the angles are different then
- cos(xy) cos(x)cos(y) sin(x)sin(y)
- cos(x-y) cos(x)cos(-y) sin(x)sin(-y)
- Use cosine is even and sine is odd
26Dont memorize them all
- sin(2x) is twice the product
- sin(2x) 2sin(x)cos(x)
- If angles are different
- sin(xy) sin(x)cos(y) sin(y)cos(x)
- sin(x-y) sin(x)cos(-y) sin(-y)cos(x)
- Once again, use sine is odd, cosine is even
27(No Transcript)