Difference of Angles - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

Difference of Angles

Description:

Distance squared (cos (?) 1)2 (sin (?) 0 ) 2. They are the same!! ? ... Sum formula for sine. cos(a)cos( ) sin(a)sin( ) = cos( a) ... – PowerPoint PPT presentation

Number of Views:23
Avg rating:3.0/5.0
Slides: 28
Provided by: mari98
Category:

less

Transcript and Presenter's Notes

Title: Difference of Angles


1
Difference of Angles
  • Cosine and Sine
  • The Proof
  • Just sit back and enjoy the ride!

2
Difference of Angles
a
?
Assume we are on the unit circle.
3
Difference of Angles
a - ?
a
?
Assume we are on the unit circle.
4
Difference of Angles
( cos (a ?) ,sin (a ?) )
( cos (a) ,sin (a) )
( cos (?) ,sin (?) )
a - ?
a
?
Assume we are on the unit circle.
5
Difference of Angles
a (a ?) ?
( cos (a ?) ,sin (a ?) )
( cos (a) ,sin (a) )
( cos (?) ,sin (?) )
?
a - ?
a
?
Assume we are on the unit circle.
6
Difference of Angles
( cos (a ?) ,sin (a ?) )
( cos (a) ,sin (a) )
( cos (?) ,sin (?) )
?
a - ?
a
?
(1,0)
Assume we are on the unit circle.
7
Distance squared ( cos(a) cos(a ?) )2
(sin(a) - sin (a ?) )2
( cos (a ?) ,sin (a ?) )
( cos (a) ,sin (a) )
( cos (?) ,sin (?) )
?
a - ?
a
?
(1,0)
Distance squared (cos (?) 1)2 (sin (?) 0 )
2
They are the same!!
Assume we are on the unit circle.
8
Set distances equal and simplify
  • ( cos(a) cos(a ?) )2 (sin(a) - sin (a ?)
    )2 (cos (?) 1)2 (sin (?) 0 ) 2
  • cos2(a) 2cos(a)(cos(a ?) cos2(a ?) sin
    2(a) - 2sin(a)sin(a ?) sin2(a ?)
  • cos2(?) 2cos(?) 1 sin2(?)

9
Set distances equal and simplify
  • ( cos(a) cos(a ?) )2 (sin(a) - sin (a ?)
    )2 (cos (?) 1)2 (sin (?) 0 ) 2
  • cos2(a) 2cos(a)(cos(a ?) cos2(a ?) sin
    2(a) - 2sin(a)sin(a ?) sin2(a ?)
  • cos2(?) 2cos(?) 1 sin2(?)
  • 1

10
Set distances equal and simplify
  • ( cos(a) cos(a ?) )2 (sin(a) - sin (a ?)
    )2 (cos (?) 1)2 (sin (?) 0 ) 2
  • cos2(a) 2cos(a)(cos(a ?) cos2(a ?) sin
    2(a) - 2sin(a)sin(a ?) sin2(a ?)
  • cos2(?) 2cos(?) 1 sin2(?)
  • 1 1

11
Set distances equal and simplify
  • ( cos(a) cos(a ?) )2 (sin(a) - sin (a ?)
    )2 (cos (?) 1)2 (sin (?) 0 ) 2
  • cos2(a) 2cos(a)(cos(a ?) cos2(a ?) sin
    2(a) - 2sin(a)sin(a ?) sin2(a ?)
  • cos2(?) 2cos(?) 1 sin2(?)
  • 1 1 2cos(a)(cos(a ?) - 2sin(a)sin(a ?)
    cos2(?) 2cos(?) 1 sin2(?)

12
Set distances equal and simplify
  • ( cos(a) cos(a ?) )2 (sin(a) - sin (a ?)
    )2 (cos (?) 1)2 (sin (?) 0 ) 2
  • cos2(a) 2cos(a)(cos(a ?) cos2(a ?) sin
    2(a) - 2sin(a)sin(a ?) sin2(a ?)
  • cos2(?) 2cos(?) 1 sin2(?)
  • 1 1 2cos(a)(cos(a ?) - 2sin(a)sin(a ?)
    cos2(?) 2cos(?) 1 sin2(?)

13
Set distances equal and simplify
  • ( cos(a) cos(a ?) )2 (sin(a) - sin (a ?)
    )2 (cos (?) 1)2 (sin (?) 0 ) 2
  • cos2(a) 2cos(a)(cos(a ?) cos2(a ?) sin
    2(a) - 2sin(a)sin(a ?) sin2(a ?)
  • cos2(?) 2cos(?) 1 sin2(?)
  • 1 1 2cos(a)(cos(a ?) - 2sin(a)sin(a ?)
    cos2(?) 2cos(?) 1 sin2(?)
  • 1 1 2cos(a)(cos(a ?) - 2sin(a)sin(a ?)
    1

14
Set distances equal and simplify
  • ( cos(a) cos(a ?) )2 (sin(a) - sin (a ?)
    )2 (cos (?) 1)2 (sin (?) 0 ) 2
  • cos2(a) 2cos(a)(cos(a ?) cos2(a ?) sin
    2(a) - 2sin(a)sin(a ?) sin2(a ?)
  • cos2(?) 2cos(?) 1 sin2(?)
  • 1 1 2cos(a)(cos(a ?) - 2sin(a)sin(a ?)
    cos2(?) 2cos(?) 1 sin2(?)
  • 1 1 2cos(a)(cos(a ?) - 2sin(a)sin(a ?)
    1 2cos(?) 1

2 2cos(a)(cos(a ?) - 2sin(a)sin(a ?) 2
2cos(?) 2cos(a)(cos(a ?) - 2sin(a)sin(a
?) 2cos(?) cos(a)(cos(a ?)
sin(a)sin(a ?) cos(?)
15
Formula for cosine
cos(a)(cos(a ?) sin(a)sin(a ?)
cos(?)
16
Difference Formula for cosine
  • cos(a)(cos(a ?) sin(a)sin(a ?) cos(?)
  • If ß a ? and ? a ß
  • And by substitution we get
  • cos(a)cos(ß) sin(a)sin(ß) cos(a - ß)

17
Difference Formula for cosine
cos(a)cos(ß) sin(a)sin(ß) cos(a - ß )

18
Sum Formula for cosine
  • cos(a)cos(ß) sin(a)sin(ß) cos(a - ß )
  • cos(a)cos(-ß) sin(a)sin(-ß) cos(a (- ß) )
  • cos(a)cos(ß) - sin(a)sin(ß) cos(a ß )

19
Sum formula for sine
  • cos(a)cos(ß) sin(a)sin(ß) cos(ß a)
  • sin(x)cos(x-?/2)and sin(a-?/2)-cos(a)
  • Now, we get
  • sin(ß a) cos(ß a - ?/2 )

20
Sum formula for sine
  • cos(a)cos(ß) sin(a)sin(ß) cos(ß a)
  • sin(a)cos (a-?/2)and sin(a-?/2)-cos(a)
  • Now, we get
  • sin(ß a) cos(ß (a - ?/2))
  • By sum formula for cosine
  • sin(ß a) cos(a ?/2)cos(ß) sin(a
    ?/2)sin(ß)
  • sin(ß a) sin(a)cos(ß) cos(a)sin(ß)

21
Sum formula for sine
sin(ß a) sin(a)cos(ß) cos(a)sin(ß)
22
Difference formula for sine
  • sin(ß a) sin(a)cos(ß) cos(a)sin(ß)
  • sin(ß - a) sin(-a)cos(ß) cos(-a)sin(ß)
  • sin(ß - a) - sin(a)cos(ß) cos(a)sin(ß)
  • Because sine is an odd function
  • And cosine is an even function
  • So
  • sin(ß - a) sin(ß )cos(a) - cos(ß)sin(a)

23
Formulas
  • cos(ß a) cos(a)cos(ß) sin(a)sin(ß)
  • sin(ß a) sin(a)cos(ß) cos(a)sin(ß)
  • sin(ß - a) sin(a)cos(ß) - cos(a)sin(ß)
  • cos(ß - a) cos(a)cos(ß) sin(a)sin(ß)

24
Double Angle
  • cos(a a) cos(a)cos(a) sin(a)sin(a)
  • cos(2a) cos2(a) sin2(a)
  • sin(a a) sin(a)cos(a) cos(a)sin(a)
  • sin(2a) 2sin(a)cos(a)

25
Dont memorize them all
  • Just know the double angle formulas
  • cos(2x) is almost pythagorean thm
  • cos(2x) cos2(x) sin2(x)
  • If the angles are different then
  • cos(xy) cos(x)cos(y) sin(x)sin(y)
  • cos(x-y) cos(x)cos(-y) sin(x)sin(-y)
  • Use cosine is even and sine is odd

26
Dont memorize them all
  • sin(2x) is twice the product
  • sin(2x) 2sin(x)cos(x)
  • If angles are different
  • sin(xy) sin(x)cos(y) sin(y)cos(x)
  • sin(x-y) sin(x)cos(-y) sin(-y)cos(x)
  • Once again, use sine is odd, cosine is even

27
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com