Proactive Monte Carlo Analysis in Structural Equation Modeling - PowerPoint PPT Presentation

About This Presentation
Title:

Proactive Monte Carlo Analysis in Structural Equation Modeling

Description:

Writing a Program Manual ... SEM programs will iterate the solution. Freeware (Steiger, 2005, in press) will perform direct analytic solution ... – PowerPoint PPT presentation

Number of Views:43
Avg rating:3.0/5.0
Slides: 58
Provided by: jameshs
Category:

less

Transcript and Presenter's Notes

Title: Proactive Monte Carlo Analysis in Structural Equation Modeling


1
Proactive Monte Carlo Analysis in Structural
Equation Modeling
  • James H. Steiger
  • Vanderbilt University

2
Some Unhappy Scenarios
  • A Confirmatory Factor Analysis
  • You fit a 3 factor model to 9 variables with
    N150
  • You obtain a Heywood Case
  • Comparing Two Correlation Matrices
  • You wish to test whether two population matrices
    are equivalent, using ML estimation
  • You obtain an unexpected rejection

3
Some Unhappy Scenarios
  • Fitting a Trait-State Model
  • You fit the Kenny-Zautra TSE model to 4 waves of
    panel data with N200. You obtain a variance
    estimate of zero.
  • Writing a Program Manual
  • You include an example analysis in your widely
    distributed computer manual
  • The analysis remains in your manuals for more
    than a decade
  • The analysis is fundamentally flawed, and gives
    incorrect results

4
Some Common Elements
  • Models of covariance or correlation structure
  • Potential problems could have been identified
    before data were ever gathered, using proactive
    Monte Carlo analysis

5
Confirmatory Factor Analysis
Variable Factor 1 Factor 2 Factor 3
VIS_PERC X
CUBES X
LOZENGES X
PAR_COMP X
SEN_COMP X
WRD_MNG X
ADDITION X
CNT_DOT X
ST_CURVE X
6
Confirmatory Factor Analysis
Variable Factor 1 Factor 2 Factor 3 Unique Var.
VIS_PERC 0.46 0.79
CUBES 0.65 0.58
LOZENGES 0.25 0.94
PAR_COMP 1.00 0.00
SEN_COMP 0.41 0.84
WRD_MNG 0.22 0.95
ADDITION 0.38 0.85
CNT_DOT 1.00 0.00
ST_CURVE 0.30 0.91
7
Confirmatory Factor Analysis
Variable Factor 1 Factor 2 Factor 3 Unique Var.
VIS_PERC 0.60 0.64
CUBES 0.60 0.64
LOZENGES 0.60 0.64
PAR_COMP 0.60 0.64
SEN_COMP 0.60 0.64
WRD_MNG 0.60 0.64
ADDITION 0.60 0.64
CNT_DOT 0.60 0.64
ST_CURVE 0.60 0.64
8
Proactive Monte Carlo Analysis
  • Take the model you anticipate fitting
  • Insert reasonable parameter values
  • Generate a population covariance or correlation
    matrix and fit this matrix, to assess
    identification problems
  • Examine Monte Carlo performance over a range of
    sample sizes that you are considering
  • Assess convergence problems, frequency of
    improper estimates, Type I Error, accuracy of fit
    indices
  • Preliminary investigations may take only a few
    hours

9
Confirmatory Factor Analysis
(Speed)-1.3-gtVIS_PERC (Speed)-2.4-gtCUBES
(Speed)-3.5-gtLOZENGES (Verbal)-4.6-gtPAR
_COMP (Verbal)-5.3-gtSEN_COMP
(Verbal)-6.4-gtWRD_MNG (Visual)-7.5-gtADDIT
ION (Visual)-8.6-gtCNT_DOT
(Visual)-9.3-gtST_CURVE
10
Confirmatory Factor Analysis
11
Confirmatory Factor Analysis
12
Confirmatory Factor Analysis
13
Confirmatory Factor Analysis
(Speed)-1.53-gtVIS_PERC (Speed)-2.54-gtCUBE
S (Speed)-3.55-gtLOZENGES
(Verbal)-4.6-gtPAR_COMP (Verbal)-5.3-gtSEN_C
OMP (Verbal)-6.4-gtWRD_MNG
(Visual)-7.5-gtADDITION (Visual)-8.6-gtCNT_D
OT (Visual)-9.3-gtST_CURVE
14
Confirmatory Factor Analysis
15
Confirmatory Factor Analysis
16
Confirmatory Factor Analysis
17
Confirmatory Factor Analysis
Variable Factor 1 Factor 2 Factor 3 Unique Var.
VIS_PERC 0.60 0.64
CUBES 0.60 0.64
LOZENGES 0.60 0.64
PAR_COMP 0.60 0.64
SEN_COMP 0.60 0.64
WRD_MNG 0.60 0.64
ADDITION 0.60 0.64
CNT_DOT 0.60 0.64
ST_CURVE 0.60 0.64
18
Proactive Monte Carlo Analysis
19
Proactive Monte Carlo Analysis
20
Proactive Monte Carlo Analysis
21
Proactive Monte Carlo Analysis
22
Percentage of Heywood Cases
N Loading .4 Loading .6 Loading .8
75 80 30 0
100 78 11 0
150 62 3 0
300 21 0 0
500 01 0 0
23
Standard Errors
24
Standard Errors
25
Standard Errors
26
Distribution of Estimates
27
Standard Errors (N 300)
28
Standard Errors (N 300)
29
Distribution of Estimates
30
Correlational Pattern Hypotheses
  • Pattern Hypothesis
  • A statistical hypothesis that specifies that
    parameters or groups of parameters are equal to
    each other, and/or to specified numerical values
  • Advantages of Pattern Hypotheses
  • Only about equality, so they are invariant under
    nonlinear monotonic transformations (e.g., Fisher
    Transform).

31
Correlational Pattern Hypotheses
  • Caution! You cannot use the Fisher transform to
    construct confidence intervals for differences of
    correlations
  • For an example of this error, see Glass and
    Stanley (1970, p. 311-312).

32
Comparing Two Correlation Matrices in Two
Independent Samples
  • Jennrich (1970)
  • Method of Maximum Likelihood (ML)
  • Method of Generalized Least Squares (GLS)
  • Example
  • Two 11x11 matrices
  • Sample sizes of 40 and 89

33
Comparing Two Correlation Matrices in Two
Independent Samples
  • ML Approach
  • Minimizes ML discrepancy function
  • Can be programmed with standard SEM software
    packages that have multi-sample capability

34
Comparing Two Correlation Matrices in Two
Independent Samples
  • Generalized Least Squares Approach
  • Minimizes GLS discrepancy function
  • SEM programs will iterate the solution
  • Freeware (Steiger, 2005, in press) will perform
    direct analytic solution

35
Monte Carlo Results Chi-Square Statistic
Mean S.D.
Observed 75.8 13.2
Expected 66 11.5
36
Monte Carlo Results Distribution of p-Values
37
Monte Carlo Results Distribution of Chi-Square
Statistics
38
Monte Carlo Results (ML) Empirical vs. Nominal
Type I Error Rate
Nominal a .010 .050
Empirical a .076 .208
39
Monte Carlo Results (ML)Empirical vs. Nominal
Type I Error RateN 250 per Group
Nominal a .010 .050
Empirical a .011 .068
40
Monte Carlo Results Chi-Square Statistic, N
250 per Group
Mean S.D.
Observed 67.7 11.6
Expected 66 11.5
41
Kenny-Zautra TSE Model
42
Likelihood of Improper Values in the TSE Model
43
Constraint Interaction
  • Steiger, J.H. (2002). When constraints interact
    A caution about reference variables,
    identification constraints, and scale
    dependencies in structural equation modeling.
    Psychological Methods, 7, 210-227.

44
Constraint Interaction
45
Constraint Interaction
46
Constraint Interaction
47
Constraint Interaction
48
Constraint Interaction Model without ULI
Constraints (Constrained Estimation)
  • (XI1)-1-gtX1
  • (XI1)-2-gtX2
  • (XI1)-1-(XI1)
  • (DELTA1)--gtX1
  • (DELTA2)--gtX2
  • (DELTA1)-3-(DELTA1)
  • (DELTA2)-4-(DELTA2)
  • (ETA1)-98-gtY1
  • (ETA1)-5-gtY2
  • (ETA2)-99-gtY3
  • (ETA2)-6-gtY4
  • (EPSILON1)--gtY1

49
Constraint Interaction
50
Constraint Interaction
51
Constraint Interaction Model With ULI
Constraints
  • (XI1)--gtX1
  • (XI1)-2-gtX2
  • (XI1)-1-(XI1)
  • (DELTA1)--gtX1
  • (DELTA2)--gtX2
  • (DELTA1)-3-(DELTA1)
  • (DELTA2)-4-(DELTA2)
  • (ETA1)--gtY1
  • (ETA1)-5-gtY2
  • (ETA2)--gtY3
  • (ETA2)-6-gtY4
  • (EPSILON1)--gtY1
  • (EPSILON2)--gtY2

52
Constraint Interaction Model With ULI
Constraints
53
Typical Characteristics of Statistical Computing
Cycles
  • Back-loaded
  • Occur late in the research cycle, after data are
    gathered
  • Reactive
  • Often occur in support of analytic activities
    that are reactions to previous analysis results

54
Traditional Statistical World-View
  • Data come first
  • Analyses come second
  • Analyses are well-understood and will work
  • Before the data arrive, there is nothing to
    analyze and no reason to start analyzing

55
Modern Statistical World View
  • Planning comes first
  • Power Analysis, Precision Analysis, etc.
  • Planning may require some substantial computing
  • Goal is to estimate required sample size
  • Data analysis must wait for data

56
Proactive SEM Statistical World View
  • SEM involves interaction between specific
    model(s) and data.
  • Some models may not work with many data sets
  • Planning involves
  • Power Analysis
  • Precision Analysis
  • Confirming Identification
  • Proactive Analysis of Model Performance
  • Without proper proactive analysis, research can
    be stopped cold with an unhappy surprise.

57
Barriers
  • Software
  • Design
  • Availability
  • Education
Write a Comment
User Comments (0)
About PowerShow.com