Title: Scattering Theory - Invariant
1Scattering Theory - Invariant
(Porod (1951)) Q ?I(S) dS (1/(2p)3)?I(q)
dq total scattering over the whole of
reciprocal space
2Scattering Theory - Invariant
(Porod (1951)) Q ?I(S) dS (1/(2p)3)?I(q)
dq total scattering over the whole of
reciprocal space Q ?p (0) lt?2gt V
(see derivation in Roe, 1.5)
3Pair distribution fcn
Single atomic species (Roe, Sect.
4.1) Short range order Atom environments vary
- can only get an avg picture Define PDF g(r) to
describe structure Can get PDF from scattering
data
4Pair distribution fcn
Single atomic species (Roe, Sect.
4.1) Short range order Atom environments vary
- can only get an avg picture Define PDF g(r) to
describe structure of atoms, on avg, in
dr n2 (r) dr, and g(r) n2 (r)/ ltngt where
ltngt avg density of atoms
atom
dr
r
5Pair distribution fcn
Single atomic species (Roe, Sect.
4.1) Short range order g(r) radial
distribution fcn when material is amorphous
(isotropic)
6Pair distribution fcn
Single atomic species I(q) A(q) 2 (b ?
exp(iq rj) )(b ??exp(-iq rk)) N b2
b2 ???? exp(-iq r jk) rjk rj - rk
N b2 N b2 ? n2 (r) exp(-iq
rk) dr
N
N
j1
k1
N
j1
j?k
V
7Pair distribution fcn
Single atomic species I(q) A(q) 2 (b ?
exp(iq rj) )(b ??exp(-iq rk)) N b2
b2 ???? exp(-iq r jk) rjk rj - rk
N b2 N b2 ? n2 (r) exp(-iq
rk) dr N b2 N b2 ? n2 (r) - ltngtexp(-iq
rk) dr N b2 ?ltngtexp(-iq rk) dr N b2 N b2
ltngt ? g(r) - 1exp(-iq rk) dr N b2 ltngt ?(q)
N
N
j1
k1
N
j1
j?k
V
8Pair distribution fcn
Single atomic species I(q) A(q) 2 (b ?
exp(iq rj) )(b ??exp(-iq rk)) N b2
b2 ???? exp(-iq r jk) rjk rj - rk
N b2 N b2 ? n2 (r) exp(-iq r)
dr N b2 N b2 ? n2 (r) - ltngtexp(-iq r) dr
N b2 ?ltngtexp(-iq r) dr N b2 N b2 ltngt ?
g(r) - 1exp(-iqr) dr N b2 ltngt
?(q) unobservable - ignore Define
interference fcn i(q) (I(q) - N b2)/ N b2
N
N
j1
k1
N
j1
j?k
V
9Pair distribution fcn
Single atomic species N b2 N b2 ltngt ? g(r)
- 1exp(-iqr) dr N b2 ltngt ?(q) unobservab
le - ignore Define interference fcn i(q)
(I(q) - N b2)/ N b2 Then i(q) ltngt ? g(r) -
1exp(-iqr) dr And get g(r) - 1 from inverse
Fourier transform of i(q) g(r) - 1 1/ltngt
?i(q) exp(iqr) dq
V
V
V
10Pair distribution fcn
Simple polymer (Cs Hs) Need gCC( r), gHH(r),
gCH(r) gCH(r) nCH(r) /ltnHgt ltnHgt
avg density of H atoms
11Pair distribution fcn
Simple polymer (Cs Hs) Need gCC( r), gHH(r),
gCH(r) gCH(r) nCH(r) /ltnHgt ltnHgt
avg density of H atoms gCH(r) gHC(r)
12Pair distribution fcn
Simple polymer I(q) ? N? b?2 ? N? b? ?
b? ? n?? (r) exp(-iqr) dr m different types of
atoms (for C H, m2) ?????( 1.m)? denote
atom types N? of ???????
m
m
m
?1
?1
?1
V
13Pair distribution fcn
Simple polymer I(q) ? N? b?2 ? N? b? ?
b? ? n?? (r) exp(-iqr) dr m different types of
atoms (for C H, m2) ?????( 1.m)? denote
atom types N? of ??????? N? N x?????
ltn?gt ?? ltngt x?? x????????????? of
??????? Then I(q) N ? x? b?2 N ltngt? ? x?
x? b? b? ? g??(r) -1 exp(-iqr) dr
m
m
m
?1
?1
?1
V
m
m
m
V
?1
?1
?1
14Pair distribution fcn
Simple polymer I(q) N ? x? b?2 N ltngt? ?
x? x? b? b? ? g??(r) -1 exp(-iqr) dr m
different types of atoms (for C H,
m2) ?????( 1.m)? denote atom types N?
of ??????? N? N x????? ltn?gt ?? ltngt x??
x????????????? of ??????? Then i(q) ltngt ?
g(r) - 1exp(-iqr) dr And get g(r) - 1 from
inverse Fourier transform of i(q) g(r) - 1
1/ltngt ?i(q) exp(iqr) dq
m
m
m
V
?1
?1
?1
V
15Pair distribution fcn
Simple polymer I(q) N ? x? b?2 N ltngt? ?
x? x? b? b? ? g??(r) -1 exp(-iqr) dr i(q)
? g(r) - 1exp(-iqr) dr If w? x?b?/ ?
x?b? then ? g(r) exp(-iqr) dr ? ? w? w? ?
g?? (r) exp(-iqr) dr
m
m
m
V
?1
?1
?1
V
m
?1
m
m
V
V
?1
?1
16Pair distribution fcn
Simple polymer I(q) N ? x? b?2 N ltngt? ?
x? x? b? b? ? g??(r) -1 exp(-iqr) dr i(q)
? g(r) - 1exp(-iqr) dr If w? x?b?/ ?
x?b? then ? g(r) exp(-iqr) dr ? ? w? w?
?g?? (r) exp(-iqr) dr Can get g(r), but not
separate g?????N????????????????????????.
m
m
m
V
?1
?1
?1
V
m
?1
m
m
V
V
?1
?1