Teknik Peramalan: Materi minggu kedua - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Teknik Peramalan: Materi minggu kedua

Description:

3. Forecast p periods into the future : Exponential Smoothing Adjusted for Trend and Seasonal Variation : Winter's Method ... Winter's Methods dengan alpha 0,4; ... – PowerPoint PPT presentation

Number of Views:888
Avg rating:5.0/5.0
Slides: 26
Provided by: Boy60
Category:

less

Transcript and Presenter's Notes

Title: Teknik Peramalan: Materi minggu kedua


1
Teknik Peramalan Materi minggu kedua
  • Pendahuluan
  • Naïve Models dan Moving Average Methods
  • Exponential Smoothing Methods
  • Regresi dan Trend Analysis
  • Regresi Berganda dan Time Series Regresi
  • Metode Dekomposisi
  • Model ARIMA Box-Jenkins
  • Studi Kasus Model ARIMAX (Analisis Intervensi,
    Fungsi Transfer dan Neural Networks)

?
?
2
Referensi Utama
  • ?. Hanke, J.E. and Reitsch, A.G. (1995 2001)
    Business
    Forecasting
    5th and 7th edition,
    Prentice Hall.
  • ? Chapter 4 Exploring Data Pattern
  • ? Measuring Forecasting Error
  • ? Chapter 5 Moving Average and Smoothing
    Methods
  • ? Naïve Models
  • ? Averaging Methods
  • ? Exponential Smoothing Methods

?
?
?
?
3
Kaitan Pola Data dengan Metode Peramalan
4
Naïve Model
  • ? The recent periods are the best predictors of
    the future.
  • 1. The simplest model for stationary data is
  • 2. The simplest model for trend data is
  • or
  • 3. The simplest model for seasonal data is

5
MINITAB implementation
Time Series Plot
6
MINITAB implementation
(continued)
Naïve 3
Naïve 1
Naïve 2
7
MINITAB implementation
(continued)
Naïve 1
Naïve 2
Naïve 3
8
MINITAB implementation
(continued)
Naïve 1
Naïve 2
Naïve 3
MSE.1 28547.5, MSE.2 53592.5, MSE.3
4567.5
9
Measuring Forecasting Error
  • ? MSE/MSD (mean squared error)
  • ? rata-rata kuadrat kesalahan (residual atau
    error).
  • ? MAD (mean absolute deviation)
  • ? ukuran kesalahan peramalan dalam unit ukuran
    yang sama dengan data aslinya.
  • ? MAPE (mean absolute percentage error)
  • ? persentase kesalahan absolut rata-rata.
  • ? MPE (mean percentage error)
  • ? persentase kesalahan rata-rata.

10
Average Methods
  • 1. Simple Averages
  • ? obtained by finding the mean for all the
    relevant values and then using this mean to
    forecast the next period.
  • 2. Moving Averages
  • ? obtained by finding the mean for a specified
    set of values and then using this mean to
    forecast the next period.

for stationary data
for stationary data
11
Average Methods
(continued)
  • 3. Double Moving Averages
  • ? one set of moving averages is computed, and
    then a second set is computed as a moving
    average of the first set.
  • (i).
  • (ii).
  • (iii).
  • (iv).

for a linear trend data
12
MINITAB implementation
13
MINITAB implementation
(continued)
14
Case Study of Video Store MINITAB implementation
Double Moving Averages
Moving Averages
15
Moving Averages Result
(continued)
16
Moving Averages VS Double Moving Averages
Results
MA or Moving Averages
DMA or Double Moving Averages
MSE.MA 132.67, MSE.DMA 63.7
17
Exponential Smoothing Methods
  • Single Exponential Smoothing ? for stationary
    data
  • Exponential Smoothing Adjusted for Trend Holts
    Method
  • 1. The exponentially smoothed series
  • At ? Yt (1??) (At-1 Tt-1)
  • 2. The trend estimate
  • Tt ? (At ? At-1) (1 ? ?) Tt-1
  • 3. Forecast p periods into the future

18
Exponential Smoothing Adjusted for Trend and
Seasonal Variation Winters Method
  • 1. The exponentially smoothed series
  • 2. The trend estimate
  • 3. The seasonality estimate
  • 4. Forecast p periods into the future

Three parameters models
19
SES MINITAB implementation
SES dengan alpha 0,1
SES dengan alpha 0,6
20
SES MINITAB implementation
(continued)
21
SES MINITAB implementation
(continued)
22
DES (Holts Methods) MINITAB implementation
(continued)
DES dengan alpha 0,3 dan beta 0,1
23
DES MINITAB implementation
(continued)
24
Winters Methods MINITAB implementation
Winters Methods dengan alpha 0,4 beta 0,1 dan
gamma 0,3
25
Winters Methods MINITAB implementation
(continued)
Write a Comment
User Comments (0)
About PowerShow.com