Title: Teknik Peramalan: Materi minggu kedua
1Teknik Peramalan Materi minggu kedua
- Pendahuluan
- Naïve Models dan Moving Average Methods
- Exponential Smoothing Methods
- Regresi dan Trend Analysis
- Regresi Berganda dan Time Series Regresi
- Metode Dekomposisi
- Model ARIMA Box-Jenkins
- Studi Kasus Model ARIMAX (Analisis Intervensi,
Fungsi Transfer dan Neural Networks)
?
?
2Referensi Utama
- ?. Hanke, J.E. and Reitsch, A.G. (1995 2001)
Business
Forecasting
5th and 7th edition,
Prentice Hall. - ? Chapter 4 Exploring Data Pattern
- ? Measuring Forecasting Error
- ? Chapter 5 Moving Average and Smoothing
Methods - ? Naïve Models
- ? Averaging Methods
- ? Exponential Smoothing Methods
?
?
?
?
3Kaitan Pola Data dengan Metode Peramalan
4Naïve Model
- ? The recent periods are the best predictors of
the future. - 1. The simplest model for stationary data is
-
- 2. The simplest model for trend data is
- or
-
- 3. The simplest model for seasonal data is
5MINITAB implementation
Time Series Plot
6MINITAB implementation
(continued)
Naïve 3
Naïve 1
Naïve 2
7MINITAB implementation
(continued)
Naïve 1
Naïve 2
Naïve 3
8MINITAB implementation
(continued)
Naïve 1
Naïve 2
Naïve 3
MSE.1 28547.5, MSE.2 53592.5, MSE.3
4567.5
9Measuring Forecasting Error
- ? MSE/MSD (mean squared error)
- ? rata-rata kuadrat kesalahan (residual atau
error). - ? MAD (mean absolute deviation)
- ? ukuran kesalahan peramalan dalam unit ukuran
yang sama dengan data aslinya. - ? MAPE (mean absolute percentage error)
- ? persentase kesalahan absolut rata-rata.
- ? MPE (mean percentage error)
- ? persentase kesalahan rata-rata.
10Average Methods
- 1. Simple Averages
- ? obtained by finding the mean for all the
relevant values and then using this mean to
forecast the next period. -
- 2. Moving Averages
- ? obtained by finding the mean for a specified
set of values and then using this mean to
forecast the next period.
for stationary data
for stationary data
11Average Methods
(continued)
- 3. Double Moving Averages
- ? one set of moving averages is computed, and
then a second set is computed as a moving
average of the first set. - (i).
- (ii).
- (iii).
- (iv).
-
for a linear trend data
12MINITAB implementation
13MINITAB implementation
(continued)
14 Case Study of Video Store MINITAB implementation
Double Moving Averages
Moving Averages
15 Moving Averages Result
(continued)
16 Moving Averages VS Double Moving Averages
Results
MA or Moving Averages
DMA or Double Moving Averages
MSE.MA 132.67, MSE.DMA 63.7
17Exponential Smoothing Methods
- Single Exponential Smoothing ? for stationary
data -
- Exponential Smoothing Adjusted for Trend Holts
Method - 1. The exponentially smoothed series
- At ? Yt (1??) (At-1 Tt-1)
- 2. The trend estimate
- Tt ? (At ? At-1) (1 ? ?) Tt-1
- 3. Forecast p periods into the future
18Exponential Smoothing Adjusted for Trend and
Seasonal Variation Winters Method
- 1. The exponentially smoothed series
-
- 2. The trend estimate
- 3. The seasonality estimate
-
-
- 4. Forecast p periods into the future
Three parameters models
19SES MINITAB implementation
SES dengan alpha 0,1
SES dengan alpha 0,6
20SES MINITAB implementation
(continued)
21SES MINITAB implementation
(continued)
22DES (Holts Methods) MINITAB implementation
(continued)
DES dengan alpha 0,3 dan beta 0,1
23DES MINITAB implementation
(continued)
24 Winters Methods MINITAB implementation
Winters Methods dengan alpha 0,4 beta 0,1 dan
gamma 0,3
25Winters Methods MINITAB implementation
(continued)