Time Series Basics 2 - PowerPoint PPT Presentation

1 / 40
About This Presentation
Title:

Time Series Basics 2

Description:

ARMA(1,1) ACF's. Adding an AR(1) to an MA(0) (Trend plus noise) Why Is ... Forecasting AR and MA's. The ARMA(1,1) Trend plus noise models. Bubble simulations ... – PowerPoint PPT presentation

Number of Views:60
Avg rating:3.0/5.0
Slides: 41
Provided by: blakel5
Category:
Tags: arma | basics | series | time

less

Transcript and Presenter's Notes

Title: Time Series Basics 2


1
Time Series Basics (2)
  • Fin250f Lecture 3.2
  • Fall 2005
  • Reading Taylor, chapter 3.5-3.7, 3.9(skip 3.6.1)

2
Outline
  • Linear stochastic processes
  • Autoregressive process
  • Moving average process
  • Lag operator
  • Forecasting AR and MAs
  • The ARMA(1,1)
  • Trend plus noise models
  • Bubble simulations

3
Linear Stochastic Processes
  • Linear models
  • Time series dependence
  • Common econometric frameworks
  • Engineering background

4
AR(1)Autoregressive Process, Order 1
5
AR(1) Properties
6
AR(m)
7
Moving Average Process of Order 1, MA(1)
8
MA(1) Properties
9
MA(m)
10
AR-gtMA
11
Lag Operator (L)
12
Using the Lag Operator
13
An important feature for L
14
MA -gt AR
15
MA-gtAR
16
Forecasting the AR(1)
17
Forecasting the AR(1) Multiperiods
18
Forecasting an MA(1)
19
The ARMA(1,1) AR and MA parts
20
ARMA(1,1) with L
21
ARMA(1,1) with L
22
Forecasting 1 Period
23
ARMA(p,q)
24
Why ARMA(1,1)?
  • Small, but persistent ACFs
  • Comparing the AR(1) and ARMA(1,1)

25
AR(1) ACFs
26
ARMA(1,1) ACFs
27
Adding an AR(1) to an MA(0)(Trend plus noise)
28
Why Is This Useful?(Taylor 3.6.2)
  • Returns follow a combination process
  • Sum of
  • Small, but very persistent trend
  • Independent noise term

29
Trend Plus Noise
30
Trend Plus Noise
31
Parameter Example
  • A small
  • ? big
  • A 0.02, ??????

32
Trend Plus Noise ACF
33
Temporary Pricing ErrorsBubbles(3.6.1)
34
AR(1) Difference
35
Variance Ratio
36
Return Autocorrelations
37
An Example
38
Bubble Price Simulation
39
Return ACF
40
Outline
  • Linear stochastic processes
  • Autoregressive process
  • Moving average process
  • Lag operator
  • Forecasting AR and MAs
  • The ARMA(1,1)
  • Trend plus noise models
  • Bubble simulations
Write a Comment
User Comments (0)
About PowerShow.com