Title: Toward Tomorrow
1Toward Tomorrows Semantic Web
- An Approach Based on
- Information Extraction Ontologies
David W. Embley Brigham Young University
Funded in part by the National Science Foundation
2Presentation Outline
- Grand Challenge
- Meaning, Knowledge, Information, Data
- Fun and Games with Data
- Information Extraction Ontologies
- Applications
- Limitations and Pragmatics
- Summary and Challenges
3Grand Challenge
Semantic Understanding
4Grand Challenge
Semantic Understanding
If ever there were a technology that could
generate trillions of dollars in savings
worldwide , it would be the technology that
makes business information systems
interoperable. (Jeffrey T. Pollock, VP of
Technology Strategy, Modulant Solutions)
5Grand Challenge
Semantic Understanding
The Semantic Web content that is meaningful
to computers and that will unleash a revolution
of new possibilities Properly designed, the
Semantic Web can assist the evolution of human
knowledge (Tim Berners-Lee, , Weaving the
Web)
6Grand Challenge
Semantic Understanding
20th Century Data Processing 21st Century
Data Exchange The issue now is mutual
understanding. (Stefano Spaccapietra, Editor in
Chief, Journal on Data Semantics)
7Grand Challenge
Semantic Understanding
The Grand Challenge of semantic understanding
has become mission critical. Current solutions
wont scale. Businesses need economic growth
dependent on the web working and scaling (cost
1 trillion/year). (Michael Brodie, Chief
Scientist, Verizon Communications)
8What is Semantic Understanding?
Semantics The meaning or the interpretation of
a word, sentence, or other language form.
Understanding To grasp or comprehend
whats intended or expressed.
- Dictionary.com
9Can We Achieve Semantic Understanding?
A computer doesnt truly understand anything.
But computers can manipulate terms in ways that
are useful and meaningful to the human user.
- Tim Berners-Lee
Key Point it only has to be good enough. And
thats our challenge and our opportunity!
10Presentation Outline
- Grand Challenge
- Meaning, Knowledge, Information, Data
- Fun and Games with Data
- Information Extraction Ontologies
- Applications
- Limitations and Pragmatics
- Summary and Challenges
11Information Value Chain
Translating data into meaning
12Foundational Definitions
- Meaning knowledge that is relevant or activates
- Knowledge information with a degree of certainty
or community agreement - Information data in a conceptual framework
- Data attribute-value pairs
- Adapted from Meadow92
13Foundational Definitions
- Meaning knowledge that is relevant or activates
- Knowledge information with a degree of certainty
or community agreement (ontology) - Information data in a conceptual framework
- Data attribute-value pairs
- Adapted from Meadow92
14Foundational Definitions
- Meaning knowledge that is relevant or activates
- Knowledge information with a degree of certainty
or community agreement (ontology) - Information data in a conceptual framework
- Data attribute-value pairs
- Adapted from Meadow92
15Foundational Definitions
- Meaning knowledge that is relevant or activates
- Knowledge information with a degree of certainty
or community agreement (ontology) - Information data in a conceptual framework
- Data attribute-value pairs
- Adapted from Meadow92
16Data
- Attribute-Value Pairs
- Fundamental for information
- Thus, fundamental for knowledge meaning
17Data
- Attribute-Value Pairs
- Fundamental for information
- Thus, fundamental for knowledge meaning
- Data Frame
- Extensive knowledge about a data item
- Everyday data currency, dates, time, weights
measures - Textual appearance, units, context, operators,
I/O conversion - Abstract data type with an extended framework
18Presentation Outline
- Grand Challenge
- Meaning, Knowledge, Information, Data
- Fun and Games with Data
- Information Extraction Ontologies
- Applications
- Limitations and Pragmatics
- Summary and Challenges
19?
Olympus C-750 Ultra Zoom Sensor Resolution 4.2
megapixels Optical Zoom 10 x Digital Zoom 4
x Installed Memory 16 MB Lens Aperture F/8-2.8/3
.7 Focal Length min 6.3 mm Focal Length
max 63.0 mm
20?
Olympus C-750 Ultra Zoom Sensor Resolution 4.2
megapixels Optical Zoom 10 x Digital Zoom 4
x Installed Memory 16 MB Lens Aperture F/8-2.8/3
.7 Focal Length min 6.3 mm Focal Length
max 63.0 mm
21?
Olympus C-750 Ultra Zoom Sensor Resolution 4.2
megapixels Optical Zoom 10 x Digital Zoom 4
x Installed Memory 16 MB Lens Aperture F/8-2.8/3
.7 Focal Length min 6.3 mm Focal Length
max 63.0 mm
22?
Olympus C-750 Ultra Zoom Sensor Resolution 4.2
megapixels Optical Zoom 10 x Digital Zoom 4
x Installed Memory 16 MB Lens Aperture F/8-2.8/3.7
Focal Length min 6.3 mm Focal Length max 63.0 mm
23Digital Camera
Olympus C-750 Ultra Zoom Sensor Resolution 4.2
megapixels Optical Zoom 10 x Digital Zoom 4
x Installed Memory 16 MB Lens Aperture F/8-2.8/3
.7 Focal Length min 6.3 mm Focal Length
max 63.0 mm
24?
Year 2002 Make Ford Model Thunderbird Mileage
5,500 miles Features Red ABS 6 CD
changer keyless entry Price 33,000 Phone (916
) 972-9117
25?
Year 2002 Make Ford Model Thunderbird Mileage
5,500 miles Features Red ABS 6 CD
changer keyless entry Price 33,000 Phone (916
) 972-9117
26?
Year 2002 Make Ford Model Thunderbird Mileage
5,500 miles Features Red ABS 6 CD
changer keyless entry Price 33,000 Phone (916
) 972-9117
27?
Year 2002 Make Ford Model Thunderbird Mileage
5,500 miles Features Red ABS 6 CD
changer keyless entry Price 33,000 Phone (916
) 972-9117
28Car Advertisement
Year 2002 Make Ford Model Thunderbird Mileage
5,500 miles Features Red ABS 6 CD
changer keyless entry Price 33,000 Phone (916
) 972-9117
29?
Flight Class From Time/Date To
Time/Date Stops Delta 16 Coach JFK
605 pm CDG 735 am 0
02 01 04
03 01 04 Delta 119 Coach CDG
1020 am JFK 100 pm 0
09 01 04
09 01 04
30?
Flight Class From Time/Date To
Time/Date Stops Delta 16 Coach JFK
605 pm CDG 735 am 0
02 01 04
03 01 04 Delta 119 Coach CDG
1020 am JFK 100 pm 0
09 01 04
09 01 04
31Airline Itinerary
Flight Class From Time/Date To
Time/Date Stops Delta 16 Coach JFK
605 pm CDG 735 am 0
02 01 04
03 01 04 Delta 119 Coach CDG
1020 am JFK 100 pm 0
09 01 04
09 01 04
32?
Monday, October 13, 2003 Group
A W L T GF GA Pts. USA 3 0 0 11 1
9 Sweden 2 1 0 5 3 6 North Korea 1 2 0 3
4 3 Nigeria 0 3 0 0 11 0 Group
B W L T GF GA Pts. Brazil 2 0 1 8 2 7
33?
Monday, October 13, 2003 Group
A W L T GF GA Pts. USA 3 0 0 11 1
9 Sweden 2 1 0 5 3 6 North Korea 1 2 0 3
4 3 Nigeria 0 3 0 0 11 0 Group
B W L T GF GA Pts. Brazil 2 0 1 8 2 7
34World Cup Soccer
Monday, October 13, 2003 Group
A W L T GF GA Pts. USA 3 0 0 11 1
9 Sweden 2 1 0 5 3 6 North Korea 1 2 0 3
4 3 Nigeria 0 3 0 0 11 0 Group
B W L T GF GA Pts. Brazil 2 0 1 8 2 7
35?
Calories 250 cal Distance 2.50 miles Time 23.35
minutes Incline 1.5 degrees Speed 5.2 mph Heart
Rate 125 bpm
36?
Calories 250 cal Distance 2.50 miles Time 23.35
minutes Incline 1.5 degrees Speed 5.2 mph Heart
Rate 125 bpm
37?
Calories 250 cal Distance 2.50 miles Time 23.35
minutes Incline 1.5 degrees Speed 5.2 mph Heart
Rate 125 bpm
38Treadmill Workout
Calories 250 cal Distance 2.50 miles Time 23.35
minutes Incline 1.5 degrees Speed 5.2 mph Heart
Rate 125 bpm
39?
Place Bonnie Lake County Duchesne State Utah Typ
e Lake Elevation 10,000 feet USGS Quad Mirror
Lake Latitude 40.711ºN Longitude 110.876ºW
40?
Place Bonnie Lake County Duchesne State Utah Typ
e Lake Elevation 10,000 feet USGS Quad Mirror
Lake Latitude 40.711ºN Longitude 110.876ºW
41?
Place Bonnie Lake County Duchesne State Utah Typ
e Lake Elevation 10,000 feet USGS Quad Mirror
Lake Latitude 40.711ºN Longitude 110.876ºW
42Maps
Place Bonnie Lake County Duchesne State Utah Typ
e Lake Elevation 10,100 feet USGS Quad Mirror
Lake Latitude 40.711ºN Longitude 110.876ºW
43Presentation Outline
- Grand Challenge
- Meaning, Knowledge, Information, Data
- Fun and Games with Data
- Information Extraction Ontologies
- Applications
- Limitations and Pragmatics
- Summary and Challenges
44Information Extraction Ontologies
Source
Target
Information Extraction
Information Exchange
45What is an Extraction Ontology?
- Augmented Conceptual-Model Instance
- Object relationship sets
- Constraints
- Data frame value recognizers
- Robust Wrapper (Ontology-Based Wrapper)
- Extracts information
- Works even when site changes or when new sites
come on-line
46CarAds Extraction Ontology
ltObjectSet x"329" y"51" lexical"true"
name"Mileage" id"osmx50"gt ltDataFramegt
ltInternalRepresentationgt
ltDataType typeName"String"/gt
lt/InternalRepresentationgt
ltValuePhraseListgt ltValuePhrase
hint"Mileage Pattern 1"gt
ltValueExpression color"ffffff"gt
ltExpressionTextgt1-9\d0,2kKlt/Expressio
nTextgt lt/ValueExpressiongt
ltLeftContextExpression
color"ffffff"gt
ltObjectSet x"329" y"51" lexical"true"
name"Mileage" id"osmx50"gt ltDataFramegt
ltInternalRepresentationgt
ltDataType typeName"String"/gt
lt/InternalRepresentationgt
ltValuePhraseListgt ltValuePhrase
hint"Mileage Pattern 1"gt
ltValueExpression color"ffffff"gt
ltExpressionTextgt1-9\d0,2kKlt/Expressio
nTextgt lt/ValueExpressiongt
ltLeftContextExpression
color"ffffff"gt
47Extraction OntologiesAn Example ofSemantic
Understanding
- Intelligent Symbol Manipulation
- Gives the Illusion of Understanding
- Obtains Meaningful and Useful Results
48Presentation Outline
- Grand Challenge
- Meaning, Knowledge, Information, Data
- Fun and Games with Data
- Information Extraction Ontologies
- Applications
- Limitations and Pragmatics
- Summary and Challenges
49A Variety of Applications
- Information Extraction
- Semantic Web Page Annotation
- Free-Form Semantic Web Queries
- Task Ontologies for Free-Form Service Requests
- High-Precision Classification
- Schema Mapping for Ontology Alignment
- Record Linkage
- Accessing the Hidden Web
- Ontology Discovery and Generation
- Challenging Applications (e.g. BioInformatics)
50Application 1Information Extraction
51Constant/Keyword Recognition
'97 CHEVY Cavalier, Red, 5 spd, only 7,000 miles.
Previous owner heart broken! Asking only
11,995. 1415. JERRY SEINER MIDVALE, 566-3800
or 566-3888
Descriptor/String/Position(start/end)
Year9723 MakeCHEV58 MakeCHEVY59 ModelCav
alier1118 FeatureRed2123 Feature5
spd2630 Mileage7,0003842 KEYWORD(Mileage)mil
es4448 Price11,995100105 Mileage11,9951001
05 PhoneNr566-3800136143 PhoneNr566-38881481
55
52Heuristics
- Keyword proximity
- Subsumed and overlapping constants
- Functional relationships
- Nonfunctional relationships
- First occurrence without constraint violation
53Keyword Proximity
Year9723 MakeCHEV58 MakeCHEVY59 ModelCav
alier1118 FeatureRed2123 Feature5
spd2630 Mileage7,0003842 KEYWORD(Mileage)mil
es4448 Price11,995100105 Mileage11,9951001
05 PhoneNr566-3800136143 PhoneNr566-38881481
55
D 2
D 52
'97 CHEVY Cavalier, Red, 5 spd, only 7,000 miles
on her. Previous owner heart broken! Asking
only 11,995. 1415. JERRY SEINER MIDVALE,
566-3800 or 566-3888
54Subsumed/Overlapping Constants
Year9723 MakeCHEV58 MakeCHEVY59 ModelCav
alier1118 FeatureRed2123 Feature5
spd2630 Mileage7,0003842 KEYWORD(Mileage)mil
es4448 Price11,995100105 Mileage11,9951001
05 PhoneNr566-3800136143 PhoneNr566-38881481
55
'97 CHEVY Cavalier, Red, 5 spd, only 7,000 miles.
Previous owner heart broken! Asking only
11,995. 1415. JERRY SEINER MIDVALE, 566-3800
or 566-3888
55Functional Relationships
Year9723 MakeCHEV58 MakeCHEVY59 ModelCav
alier1118 FeatureRed2123 Feature5
spd2630 Mileage7,0003842 KEYWORD(Mileage)mil
es4448 Price11,995100105 Mileage11,9951001
05 PhoneNr566-3800136143 PhoneNr566-38881481
55
'97 CHEVY Cavalier, Red, 5 spd, only 7,000 miles
on her. Previous owner heart broken! Asking
only 11,995. 1415. JERRY SEINER MIDVALE,
566-3800 or 566-3888
56Nonfunctional Relationships
Year9723 MakeCHEV58 MakeCHEVY59 ModelCav
alier1118 FeatureRed2123 Feature5
spd2630 Mileage7,0003842 KEYWORD(Mileage)mil
es4448 Price11,995100105 Mileage11,9951001
05 PhoneNr566-3800136143 PhoneNr566-38881481
55
'97 CHEVY Cavalier, Red, 5 spd, only 7,000 miles
on her. Previous owner heart broken! Asking
only 11,995. 1415. JERRY SEINER MIDVALE,
566-3800 or 566-3888
57First Occurrence without Constraint Violation
Year9723 MakeCHEV58 MakeCHEVY59 ModelCav
alier1118 FeatureRed2123 Feature5
spd2630 Mileage7,0003842 KEYWORD(Mileage)mil
es4448 Price11,995100105 Mileage11,9951001
05 PhoneNr566-3800136143 PhoneNr566-38881481
55
'97 CHEVY Cavalier, Red, 5 spd, only 7,000 miles
on her. Previous owner heart broken! Asking
only 11,995. 1415. JERRY SEINER MIDVALE,
566-3800 or 566-3888
58Database-Instance Generator
Year9723 MakeCHEV58 MakeCHEVY59 ModelCav
alier1118 FeatureRed2123 Feature5
spd2630 Mileage7,0003842 KEYWORD(Mileage)mil
es4448 Price11,995100105 Mileage11,9951001
05 PhoneNr566-3800136143 PhoneNr566-38881481
55
insert into Car values(1001, 97, CHEVY,
Cavalier, 7,000, 11,995,
556-3800) insert into CarFeature values(1001,
Red) insert into CarFeature values(1001, 5
spd)
59Application 2Semantic Web Page Annotation
60Annotated Web Page
(Demo)
61OWL
- ltowlClass rdfID"CarAds"gt
- ltrdfslabel xmllang"en"gtCarAdslt/rdfslabelgt
- ......
- ltrdfssubClassOfgt
- ltowlRestrictiongt
- ltowlonProperty rdfresource"hasMileage"
/gt - ltowlminCardinality rdfdatatype"xsdnonNeg
ativeInteger"gt0lt/owlminCardinalitygt - lt/owlRestrictiongt
- lt/rdfssubClassOfgt
- ltrdfssubClassOfgt
- ltowlRestrictiongt
- ltowlonProperty rdfresource"hasMileage"
/gt - ltowlmaxCardinality
rdfdatatype"xsdnonNegativeInteger"gt1lt/owlmaxC
ardinalitygt - lt/owlRestrictiongt
- lt/rdfssubClassOfgt
- ltrdfssubClassOfgt
- ltowlRestrictiongt
- ltowlonProperty rdfresource"hasMile
age" /gt - ltowlallValuesFrom rdfresource"Mile
age" /gt
- ltCarAds rdfID"CarAdsIns2"gt
- ltCarAdsValue rdfdatatype"xsdstring"gt2lt/CarAds
Valuegt - lt/CarAdsgt
-
- ltMileage rdfID"MileageIns2"gt
- ltStartingCharPosition rdfdatatype"xsdnonNegat
iveInteger"gt237lt/StartingCharPositiongt - ltEndingCharPosition rdfdatatype"xsdn
onNegativeInteger"gt241lt/EndingCharPositiongt - lt/Mileagegt
- .
- ltowlThing rdfabout"CarAdsIns2"gt
- lthasMake rdfresource"MakeIns2" /gt
- lthasModel rdfresource"ModelIns2" /gt
- lthasYear rdfresource"YearIns2" /gt
- lthasMileage rdfresource"MileageIns2" /gt
- lthasPhoneNr rdfresource"PhoneNrIns2" /gt
- lthasPrice rdfresource"PriceIns2" /gt
- lt/owlThinggt
-
62Application 3Free-Form Semantic Web Queries
63Find Ontology
- Tell me about cruises on San Francisco Bay. Id
like to know scheduled times, cost, and the
duration of cruises on Friday of next week.
64Formulate Query
Friday, Oct. 29th
cost
duration
?
?
Result
(
)
65StartTime Price Duration Source
1045 am, 1200 pm, 115, 230, 400 20.00, 16.00, 12.00 1
1000 am, 1045 am, 1115 am, 1200 pm, 1230 pm, 115 pm, 145 pm, 230 pm, 300 pm, 345 pm, 415 pm, 500 pm 17.00, 16.00, 12.00 1 Hour 2
66Application 4Task Ontologies for Free-Form
Service Requests
67Basic Idea
- Service Request
- Match with Task Ontology
- Domain Ontology
- Process Ontology
- Complete, Negotiate, Finalize
I want to see a dermatologist next week any day
would be ok for me, at 400 p.m. The
dermatologist must be within 20 miles from my
home and must accept my insurance.
68Domain Ontology
69Appointment context keywords/phrase
appointment want to see a Dermatologist
context keywords/phrases (Ddermatologist)
I want to see a dermatologist next week any day
would be ok for me, at 400 p.m. The
dermatologist must be within 20 miles from my
home and must accept my insurance.
70Appointment context keywords/phrase
appointment want to see a Dermatologist
context keywords/phrases (Ddermatologist)
?
I want to see a dermatologist next week any day
would be ok for me, at 400 p.m. The
dermatologist must be within 20 miles from my
home and must accept my insurance.
71Appointment context keywords/phrase
appointment want to see a Dermatologist
context keywords/phrases (Ddermatologist)
?
?
I want to see a dermatologist next week any day
would be ok for me, at 400 p.m. The
dermatologist must be within 20 miles from my
home and must accept my insurance.
72Appointment context keywords/phrase
appointment want to see a Dermatologist
context keywords/phrases (Ddermatologist)
?
?
?
?
?
?
I want to see a dermatologist next week any day
would be ok for me, at 400 p.m. The
dermatologist must be within 20 miles from my
home and must accept my insurance.
73Date NextWeek(d1 Date, d2 Date) returns
(BooleanT,F) context keywords/phrases next
week week from now Distance internal
representation real input (s String) context
keywords/phrases miles mile mi kilometers
kilometer meters meter centimeter
Within(d1 Distance, 20) returns (Boolean T
or F) context keywords/phrases within not
more than ? return (d1?d2) end
Appointment context keywords/phrase
appointment want to see a Dermatologist
context keywords/phrases (Ddermatologist)
?
?
?
?
?
?
I want to see a dermatologist next week any day
would be ok for me, at 400 p.m. The
dermatologist must be within 20 miles from my
home and must accept my insurance.
74?
?
?
?
?
?
75(No Transcript)
76Process Ontology
77Specification Satisfaction
Date(28 Dec 04) and NextWeek(28 Dec 04, 5
Jan 05) Dermatologist(Dermatologist0) is at
Address(Orem 600 State St.) and
Within(DistanceBetween(Provo 300 State St.,
Orem 600 State St.), 22) ?i2
(Dermatologist(Dermatologist0) accepts
Insurance(i2) and Equal(IHC, i2))
78Application 5High-Precision Classification
79An Extraction Ontology Solution
80Density Heuristic
81Expected Values Heuristic
82Vector Space of Expected Values
D1
- OV ______ D1 D2
- Year 0.98 16 6
- Make 0.93 10 0
- Model 0.91 12 0
- Mileage 0.45 6 2
- Price 0.80 11 8
- Feature 2.10 29 0
- PhoneNr 1.15 15 11
- D1 0.996
- D2 0.567
ov
D2
83Grouping Heuristic
84Grouping
Car Ads ---------------- Year Year Make Model ----
---------- 3 Price Year Model Year ---------------
3 Make Model Mileage Year ---------------4 Model M
ileage Price Year ---------------4 Grouping
0.875
Sale Items ---------------- Year Year Year Mileage
-------------- 2 Mileage Year Price Price -------
--------3 Year Price Price Year ---------------2 P
rice Price Price Price ---------------1 Grouping
0.500
Expected Number in Group floor(? Ave
) 4 (for our example)
1-Max
Sum of Distinct 1-Max Object Sets in each
Group Number of Groups Expected Number in a
Group
85Application 6Schema Mapping forOntology
Alignment
86Problem Different Schemas
- Target Database Schema
- Car, Year, Make, Model, Mileage, Price,
PhoneNr, PhoneNr, Extension, Car, Feature - Different Source Table Schemas
- Run , Yr, Make, Model, Tran, Color, Dr
- Make, Model, Year, Colour, Price, Auto, Air
Cond., AM/FM, CD - Vehicle, Distance, Price, Mileage
- Year, Make, Model, Trim, Invoice/Retail, Engine,
Fuel Economy
87Solution Remove Internal Factoring
Discover Nesting Make, (Model, (Year, Colour,
Price, Auto, Air Cond, AM/FM, CD))
88Solution Replace Boolean Values
ACURA
ACURA
Legend
89Solution Form Attribute-Value Pairs
ACURA
ACURA
Legend
ltMake, Hondagt, ltModel, Civic EXgt, ltYear, 1995gt,
ltColour, Whitegt, ltPrice, 6300gt, ltAuto,
Autogt, ltAir Cond., Air Cond.gt, ltAM/FM, AM/FMgt,
ltCD, gt
90Solution Adjust Attribute-Value Pairs
ACURA
ACURA
Legend
ltMake, Hondagt, ltModel, Civic EXgt, ltYear, 1995gt,
ltColour, Whitegt, ltPrice, 6300gt, ltAutogt,
ltAir Condgt, ltAM/FMgt
91Solution Do Extraction
ACURA
ACURA
Legend
92Solution Infer Mappings
ACURA
ACURA
Legend
Car, Year, Make, Model, Mileage, Price,
PhoneNr, PhoneNr, Extension, Car, Feature
93Solution Infer Mappings
ACURA
ACURA
Legend
Car, Year, Make, Model, Mileage, Price,
PhoneNr, PhoneNr, Extension, Car, Feature
94Solution Do Extraction
ACURA
ACURA
Legend
pPriceTable
Car, Year, Make, Model, Mileage, Price,
PhoneNr, PhoneNr, Extension, Car, Feature
95Solution Do Extraction
ACURA
ACURA
Legend
? Colour?Feature p ColourTable U ? Auto?Feature p
Auto ß AutoTable U ? Air Cond.?Feature p Air
Cond. ß Air Cond.Table U ? AM/FM?Feature p AM/FM
ß AM/FMTable U ? CD?Featurep CDß CDTable
Yes,
Yes,
Yes,
Yes,
Car, Year, Make, Model, Mileage, Price,
PhoneNr, PhoneNr, Extension, Car, Feature
96Application 7Record Linkage
97Kelly Flanagan Query
98A Multi-faceted Approach
- Gather evidence from each of several different
facets - Attributes
- Links
- Page Similarity
- Combine the evidence
99Attributes
- Phone number, email address, state, city, zip
code - Data-frame recognizers
100Links
101Page Similarity
- adjacent cap-word pairs
- Cap-Word (Connector Preposition
(Article)? (Capital-LetterDot))? Cap-Word.
102Confidence Matrix for Each Facet
C1 C2 .. Ci .. Cj Cn
C1 1 C12 C1i C1j C1n
C2 1 C2i C2j C2n
Ci 1 Cij Cin
Cj 1 Cjn
Cn 1
0 if no evidence for a facet f
Cij
P(Ci and Cj refer to a same person evidence for
a facet f )
Training set to compute the conditional
probabilities
103Final Matrix
Confidence Matrix for Attributes
Confidence Matrix for Links
Confidence Matrix for Page Similarity
0.96 0 0.78 - 0.96 0 - 0.96 0.78 - 0.78
0 0.96 0 0.78 0.9912
104Grouping Algorithm
- Input final confidence matrix
- Output citations grouped by same person
- The idea
- Ci , Cj and Cj , Ck then Ci , Cj , Ck
- The threshold we use for highly
confident is 0.8.
105Experimental Results
106Application 8Accessing the Hidden Web
107Obtaining Data Behind Forms
- Web information is stored in databases
- Databases are accessed through forms
- Forms are designed in various ways
108Hidden Web Extraction System
Find green cars costing no more than 9000.
Site Form
User Query
Input Analyzer
Application Extraction Ontology
Extracted Information
Retrieved Page(s)
Output Analyzer
109Application 9Ontology Discovery Generation
110TANGO Table Analysis for Generating Ontologies
- Recognize and normalize table information
- Construct mini-ontologies from tables
- Discover inter-ontology mappings
- Merge mini-ontologies into a growing ontology
111Recognize Table Information
Religion
Population Albanian
Roman Shia
Sunni Country (July 2001 est.) Orthodox
Muslim Catholic Muslim Muslim
other Afganistan 26,813,057
15
84 1 Albania
3,510,484 20 70 30
112Construct Mini-Ontology
113Discover Mappings
114Merge
115Application 10Challenging Applications(e.g.
BioInformatics)
116Large Extraction Ontologies
117Complex Semi-Structured Pages
118Additional Analysis Opportunities
- Sibling Page Comparison
- Semi-automatic Lexicon Update
- Seed Ontology Recognition
119Sibling Page Comparison
120Sibling Page Comparison
Attributes
121Sibling Page Comparison
122Sibling Page Comparison
123Semi-automatic Lexicon Update
Additional Source Species or Organisms
Additional Protein Names
124Seed Ontology Recognition
Homo sapiens human
nucleus zinc ion binding nucleic acid binding
9606
Eukaryota Metazoa Chorata Craniata Vertebrata
Euteleostomi Mammalia Eutheria Primates Catar
rhini Hominidae Homo
zinc ion binding nucleic acid binding
NP_079345
nucleus
linear
NP_079345
FLJ14299
GTTTTTGTGTT.ATAAGTGCATTAACGGCCCACATG
msdspagsnprtpessgsgsggtagpyyspyalygqrlasasalgyq
8 eight
8?p\s?12 8?p11.2 8?p11.23
hypothetical protein FLJ14299
37,?612,?680
37,?610,?585
125Seed Ontology Recognition
126Presentation Outline
- Grand Challenge
- Meaning, Knowledge, Information, Data
- Fun and Games with Data
- Information Extraction Ontologies
- Applications
- Limitations and Pragmatics
- Summary and Challenges
127Limitations and Pragmatics
- Data-Rich, Narrow Domain
- Ambiguities Context Assumptions
- Incompleteness Implicit Information
- Common Sense Requirements
- Knowledge Prerequisites
128Busiest Airport in 2003?
Chicago - 928,735 Landings (Nat. Air Traffic
Controllers Assoc.) - 931,000 Landings
(Federal Aviation Admin.) Atlanta -
58,875,694 Passengers (Sep., latest numbers
available) Memphis - 2,494,190 Metric Tons
(Airports Council Intl.)
129Busiest Airport in 2003?
Chicago - 928,735 Landings (Nat. Air Traffic
Controllers Assoc.) - 931,000 Landings
(Federal Aviation Admin.) Atlanta -
58,875,694 Passengers (Sep., latest numbers
available) Memphis - 2,494,190 Metric Tons
(Airports Council Intl.)
130Busiest Airport in 2003?
Chicago - 928,735 Landings (Nat. Air Traffic
Controllers Assoc.) - 931,000 Landings
(Federal Aviation Admin.) Atlanta -
58,875,694 Passengers (Sep., latest numbers
available) Memphis - 2,494,190 Metric Tons
(Airports Council Intl.)
131Busiest Airport in 2003?
Chicago - 928,735 Landings (Nat. Air Traffic
Controllers Assoc.) - 931,000 Landings
(Federal Aviation Admin.) Atlanta -
58,875,694 Passengers (Sep., latest numbers
available) Memphis - 2,494,190 Metric Tons
(Airports Council Intl.)
Ambiguous Whom do we
trust?
(How do they count?)
132Busiest Airport in 2003?
Chicago - 928,735 Landings (Nat. Air Traffic
Controllers Assoc.) - 931,000 Landings
(Federal Aviation Admin.) Atlanta -
58,875,694 Passengers (Sep., latest numbers
available) Memphis - 2,494,190 Metric Tons
(Airports Council Intl.)
Important qualification
133Dow Jones Industrial Average
High Low
Last Chg 30 Indus 10527.03
10321.35 10409.85 85.18 20 Transp
3038.15 2998.60 3008.16 9.83 15
Utils 268.78 264.72 266.45
1.72 66 Stocks 3022.31 2972.94
2993.12 19.65
Graphics, Icons,
134Dow Jones Industrial Average
High Low
Last Chg 30 Indus 10527.03
10321.35 10409.85 85.18 20 Transp
3038.15 2998.60 3008.16 9.83 15
Utils 268.78 264.72 266.45
1.72 66 Stocks 3022.31 2972.94
2993.12 19.65
135Presentation Outline
- Grand Challenge
- Meaning, Knowledge, Information, Data
- Fun and Games with Data
- Information Extraction Ontologies
- Applications
- Limitations and Pragmatics
- Summary and Challenges
136Some Key Ideas
- Data, Information, and Knowledge
- Data Frames
- Knowledge about everyday data items
- Recognizers for data in context
- Ontologies
- Resilient Extraction Ontologies
- Shared Conceptualizations
- Limitations and Pragmatics
137Some Research Issues
- Building a library of open source data
recognizers - Precisely finding and gathering relevant
information - Subparts of larger data
- Scattered data (linked, factored, implied)
- Data behind forms in the hidden web
- Improving concept matching
- Indirect matching
- Calculations, unit conversions, alternative
representations,
138Some Research Challenges
(Machine Learning)
- Web Page Understanding
- Suppose extraction is 85 accurate
- Generate a page grammar
- Increased recall (more extracted)
- Increased precision (fewer false positives)
- Fast extraction from same-site sibling pages
- Universal Rules for Schema Matching
- Must rules be domain-specific?
- Can some rules be universal?
- Boundaries of Usefulness
When should machine
learning not be used? - Application to Significant Problems
- Like those above
- Many more
www.deg.byu.edu