Title: Efficiency Measurement
1Efficiency Measurement
- William Greene
- Stern School of Business
- New York University
2Lab Session 2
- Stochastic Frontier Estimation
3Application to Spanish Dairy Farms
N 247 farms, T 6 years (1993-1998)
Input Units Mean Std. Dev. Minimum Maximum
Milk Milk production (liters) 131,108 92,539 14,110 727,281
Cows of milking cows 2.12 11.27 4.5 82.3
Labor man-equivalent units 1.67 0.55 1.0 4.0
Land Hectares of land devoted to pasture and crops. 12.99 6.17 2.0 45.1
Feed Total amount of feedstuffs fed to dairy cows (tons) 57,941 47,981 3,924.14 376,732
4Using Farm Means of the Data
5(No Transcript)
6(No Transcript)
7OLS vs. Frontier/MLE
8(No Transcript)
9JLMS Inefficiency Estimator
- FRONTIER LHS the variable
- RHS ONE, the variables
- EFF the new variable
- Creates a new variable in the data set.
- FRONTIER LHS YIT RHS X EFF U_i
- Use Techeff variable to compute exp(-u).
10(No Transcript)
11(No Transcript)
12(No Transcript)
13(No Transcript)
14(No Transcript)
15 Confidence Intervals for Technical
Inefficiency, u(i)
16 Prediction Intervals for Technical Efficiency,
Exp-u(i)
17 Prediction Intervals for Technical Efficiency,
Exp-u(i)
18Compare SF and DEA
19Similar, but differentwith a crucial pattern
20(No Transcript)
21The Dreaded Error 315 Wrong Skewness
22Cost Frontier Model
23Linear Homogeneity Restriction
24Translog vs. Cobb Douglas
25Cost Frontier Command
- FRONTIER COST
- LHS the variable
- RHS ONE, the variables
- EFF the new variable
- e(i) v(i) u(i) u(i) is still positive
26Estimated Cost Frontier CG
27 Cost Frontier Inefficiencies
28Normal-Truncated NormalFrontier Command
- FRONTIER COST
- LHS the variable
- RHS ONE, the variables
- Model Truncation
- EFF the new variable
- e(i) v(i) /- u(i)
- u(i) U(i), U(i) Nµ,?2
- The half normal model has µ 0.
29Observations
- Truncation Model estimation is often unstable
- Often estimation is not possible
- When possible, estimates are often wild
- Estimates of u(i) are usually only moderately
affected - Estimates of u(i) are fairly stable across models
(exponential, truncation, etc.)
30 Truncated Normal Model
Model T
31Truncated Normal vs. Half Normal
32 Multiple Output Cost Function
33Ranking Observations
- CREATE newname Rnk ( Variable )
- Creates the set of ranks. Use in any
subsequent analysis.
34(No Transcript)