Semiconductor Memory Design - PowerPoint PPT Presentation

1 / 58
About This Presentation
Title:

Semiconductor Memory Design

Description:

FRAM. Memory Organization. May select 1, 4, 8, 16,32, 64. Col. In a Row. Memory Design ... FRAM. Ferroelectric material. Nonvolatile. Destructive read-out. Need ... – PowerPoint PPT presentation

Number of Views:276
Avg rating:3.0/5.0
Slides: 59
Provided by: kaat95
Category:

less

Transcript and Presenter's Notes

Title: Semiconductor Memory Design


1
Semiconductor Memory Design
  • Introduction
  • MOS Decoder
  • Static Random-Access Memories (SRAMs)
  • Content-Addressable Memories (CAMs)
  • Field-Programmable Gate Arrays (FPGAs)
  • Dynamic Random-Access Memories (DRAMs)
  • Read-Only Memories (ROMs)
  • EPROM EEPROM
  • Flash Memories
  • FRAM

2
Memory Organization
May select 1, 4, 8, 16,32, 64 Col. In a Row
3
Memory Design
4
Memory Timing
5
Memory Decoders
6
Two-Level Decoder (6-bit addr)
7
Ex 8.1 Sizing of Two-Level Decoder
  • Size the decoder by using FO4 rules (optimal
    stage4) and Cin(LE ?BE? Cout)/4 for each stage
  • Output loading1
  • Branch Effort (BE) of pre-decoder16

8
Ex 8.1 Solution
  • LE NAND3 5/3
  • Input C (5/3)(1/4)2
  • BE(preDec) 16
  • Cin,inv 16 (5/3)(1/4)3
  • Cin,nand2 16(4/3) (5/3)(1/4)4

9
SRAM Cell
  • Operations

10
SRAM Cell Layout
M2
  • ?30??40?

CWL/cell(2CgateCwire)
Cbit(CS/DCwireCcontact)
11
Wordline and bitline
Cword(2CgateCwire)? /row
Cbit(CS/DCwireCcontact)? /col.
12
Read operation
  • IM3 Sat IM1 lin
  • Icell C bit ??V/??
  • See Ex. 8.2 in pp. 373-374

13
Write operation
  • IM6 Sat IM4 lin

14
SRAM Column I/O Circuitry
  • Column Pull-ups

15
PC Circuitry
16
Column Selection (1)
17
Column Selection (2)
18
Write Circuitry
19
Read Circuitry
20
Sense Amplifier(1)
Differential SA
?? Cout ??V/ Iss
21
Sense Amplifier(2)
Latch-based
22
Replica for SA and CLK enable
  • SenseEnable Same delay of Bitline

23
Replica Cell design
  • To match the timing of actual column delay
  • 0.18V in 256 celsl
  • 1.8V in 26 cells

24
Memory Architecture
25
Divided WL to Reduce PD Delay
26
Bitline Partitioning to Reduce Delay
27
Content-Addressable Memory
  • Called Associative Memory
  • Lookup Scheme
  • Tag Previous stored keyword
  • Store randomly
  • SRAM architecture
  • Used in Cache
  • As Internet routing
  • Table

28
CAM Lookup Array
  • ? Diff XOR1
  • NMOS on
  • Machi 0
  • ? Same XOR0
  • NMOS off
  • Machii1 (precharged)
  • Select only one or none row

29
CAM Cell
  • M7, M8, M9, M10
  • XOR
  • Compare (q, q) with (Tagline, Tagline)
  • 20 to 30 gt Area of SRAM cell
  • Taglines
  • must start low to
  • avoid discharge in precharge phase

30
SRAM Array in CAM
  • Invalid rows if not fully used
  • Timing is critical since Matchlines are initially
    all prechaged
  • Write data same as SRAM operations except
    Tagelines start low

31
Modified CAM Cell
  • Improve Speed
  • M7 or M9 on if Gate1
  • GND passes and waits for Tagline signals
  • In Original Cell
  • Tagline signals arrive
  • Then GND can passes

Original Cell
32
Field-Programmable Gate Array
  • Rapid Implementation
  • Verify function but not timing
  • Overall architecture
  • Routing Channel
  • I/O blocks
  • PLBs

33
FPGA Architecture
34
PLB Structure
35
PLB Structure Example
36
Programmable Connections
37
I/O Block
38
Dynamic RAM Evolutions
  • SRAM w/o pull-up
  • 3T DRAM

39
DRAM ell
40
DRAM Configuration
  • Dummy cells with half Cap.

41
Sense-refresh Circuitry
42
Block diagram of 64kbit DRAM
43
Read-Only Memories
44
ROM Arrays
45
Current SA
Current Mirror
46
EPROM
47
EPROM Write/Erase Processes
48
EEPROM
FN tunneling
49
EEPROM write/Erase
50
EEPROM Read
51
Flash Memory
  • NOR Structure
  • Write Hot Carriers Injection
  • Erase Fowler-Nordheim Tunneling

52
Write and Erase
53
Flash Read Operation
54
NAND Flash
55
FRAM
  • Ferroelectric material
  • Nonvolatile
  • Destructive read-out
  • Need write back similar to DRAM
  • Drawback (not semiconductor memory)
  • Cost, Speed, Size
  • Advantages
  • Less power
  • high density/reliability

56
FRAM
  • Cap Perovskite Crystal be polarized in 2
    directions
  • Loigc-1 Vcc
  • Logic-0 ?Vcc

57
Summary of Semiconductor Memories
58
Comparison Table
Endurance Cycle 102 105 106 1010-1012
Cell Size S L S S
Speed F Med F F
Power H Med L L
Erase typ UV FN FN Polarize
Erase Res. Full Mem Bit/Byte Block Bit
Memory EPROM EEPROM Flash FRAM
Prog type HCI FN HCI/FN Polarize
Write a Comment
User Comments (0)
About PowerShow.com