steady state impacts in inverse model parameter optimization - PowerPoint PPT Presentation

1 / 21
About This Presentation
Title:

steady state impacts in inverse model parameter optimization

Description:

propagation of C fluxes estimates uncertainties for the Iberian Peninsula. the CASA model ... Iberian Peninsula. optimized parameters per site: optimization: ... – PowerPoint PPT presentation

Number of Views:23
Avg rating:3.0/5.0
Slides: 22
Provided by: carbon6
Category:

less

Transcript and Presenter's Notes

Title: steady state impacts in inverse model parameter optimization


1
steady state impacts in inverse model parameter
optimization
Carvalhais, N., Reichstein, M., Seixas, J.,
Collatz, G.J., Pereira, J.S., Berbigier, P.,
Carrara, A., Granier, A., Montagnani, L., Papale,
D., Rambal, S., Sanz, M.J., and Valentini,
R.(2008), Implications of the carbon cycle steady
state assumption for biogeochemical modeling
performance and inverse parameter retrieval,
Global Biogeochem. Cycles, 22, GB2007,
doi10.1029/2007GB003033.
2
motivation / goals
  • CASA model parameter optimization
  • spin-up routines force soil C pools estimates
  • impacts of the steady state in
  • model performance
  • parameter estimates / constraints
  • propagation of C fluxes estimates uncertainties
    for the Iberian Peninsula

3
the CASA model
Potter et al., 1993
4
approach to relax the steady state approach
  • inclusion of a parameter that relaxed the steady
    state approach ?


Css
?
Cns
5
experiment design
  • significance of each parameter
  • removing one parameter at a time
  • alternatives to ?
  • replacing by
  • soil C turnover rates
  • extra parameters on NPP and Rh temperature
    sensitivity.
  • Levenberg-Marquardt least squares optimization

6
site selection and data
  • CARBOEUROPE-IP
  • 10 Sites
  • optimization constraints NEP
  • model drivers
  • site meteorological data
  • remotely sensed fAPAR and LAI
  • different temporal resolutions

7
effect of ? in optimization
IT-Non sink 542gC m-2 yr-1
8
determinants of parameter variability ANOVA
site
parameter vector
temporal resolution
site x parameter vector
site x temporal resolution
parameter vector x temporal resolution
9
what drives ??
10
model performance improvements
model performance in relaxed gt fixed steady state
assumptions.
11
differences in parameter estimates and constraints
P/P
SE/SE
12
total soil C pools
13
steady state approach impacts
  • model performance
  • relaxed gt fixed
  • parameter estimates
  • biases
  • parameter uncertainties
  • relaxed lt fixed
  • soil C pools estimates
  • relaxed closer to measurements

14
propagating parameters / uncertainties
15
spatial simulations
  • Iberian Peninsula
  • optimized parameters per site
  • optimization naïve bootstrap approach
  • no assumption on parameters distribution
  • GIMMS NDVIg 8km, biweekly
  • parameter propagation per PFT
  • estimating NEP / NPP / Rh

16
spatial impacts NPP 1991
17
seasonality NPP IP
relaxed versus fixed
18
iav NEP IP
relaxed versus fixed
19
seasonality and iav IP
(relax fix) / fix
20
remarks
  • biases in optimized parameters lead to
    significant differences in flux estimates
    seasonality and iav
  • uncertainties propagation show significant
    reductions under relaxed steady state approaches
  • impacts in data assimilation schemes

21
Write a Comment
User Comments (0)
About PowerShow.com