Title: steady state impacts in inverse model parameter optimization
1steady state impacts in inverse model parameter
optimization
Carvalhais, N., Reichstein, M., Seixas, J.,
Collatz, G.J., Pereira, J.S., Berbigier, P.,
Carrara, A., Granier, A., Montagnani, L., Papale,
D., Rambal, S., Sanz, M.J., and Valentini,
R.(2008), Implications of the carbon cycle steady
state assumption for biogeochemical modeling
performance and inverse parameter retrieval,
Global Biogeochem. Cycles, 22, GB2007,
doi10.1029/2007GB003033.
2motivation / goals
- CASA model parameter optimization
- spin-up routines force soil C pools estimates
- impacts of the steady state in
- model performance
- parameter estimates / constraints
- propagation of C fluxes estimates uncertainties
for the Iberian Peninsula
3the CASA model
Potter et al., 1993
4approach to relax the steady state approach
- inclusion of a parameter that relaxed the steady
state approach ?
Css
?
Cns
5experiment design
- significance of each parameter
- removing one parameter at a time
- alternatives to ?
- replacing by
- soil C turnover rates
- extra parameters on NPP and Rh temperature
sensitivity. - Levenberg-Marquardt least squares optimization
6site selection and data
- CARBOEUROPE-IP
- 10 Sites
- optimization constraints NEP
- model drivers
- site meteorological data
- remotely sensed fAPAR and LAI
- different temporal resolutions
7effect of ? in optimization
IT-Non sink 542gC m-2 yr-1
8determinants of parameter variability ANOVA
site
parameter vector
temporal resolution
site x parameter vector
site x temporal resolution
parameter vector x temporal resolution
9what drives ??
10model performance improvements
model performance in relaxed gt fixed steady state
assumptions.
11differences in parameter estimates and constraints
P/P
SE/SE
12total soil C pools
13steady state approach impacts
- model performance
- relaxed gt fixed
- parameter estimates
- biases
- parameter uncertainties
- relaxed lt fixed
- soil C pools estimates
- relaxed closer to measurements
14propagating parameters / uncertainties
15spatial simulations
- Iberian Peninsula
- optimized parameters per site
- optimization naïve bootstrap approach
- no assumption on parameters distribution
- GIMMS NDVIg 8km, biweekly
- parameter propagation per PFT
- estimating NEP / NPP / Rh
16spatial impacts NPP 1991
17seasonality NPP IP
relaxed versus fixed
18iav NEP IP
relaxed versus fixed
19seasonality and iav IP
(relax fix) / fix
20remarks
- biases in optimized parameters lead to
significant differences in flux estimates
seasonality and iav - uncertainties propagation show significant
reductions under relaxed steady state approaches - impacts in data assimilation schemes
21