Title: Principal component analysis of good continuation cues
1Principal component analysis of good continuation
cues
2Background
3Background
4Brunswik and Kamiya (1952)
Proximity
Similarity
Symmetry
Good Continuation
Closure
5Elder and Goldberg (1998/2002)
6Orientation
7Blur Scale
8Contrast
9Elder and Goldberg
10Elder and Goldberg
- Good Continuation
- Parallelism
- Co-circularity
11Elder and Goldberg
- Good Continuation
- Parallelism
- Co-circularity
12Parallelism
13Co-circularity
14Good Continuation
15Parallelism and Cocircularity
16Discretization
17Enter Aaron
18Sub-Pixel Localized Edgels
Pixel Localized Edgels Sub-Pixel Localized Edgels
19The Task
20The Task
21The Traced Elephant
22Individual Edgels
23Nearest Neighbours
248 Edgel Separation
2564 Edgel Separation
26Inferential Power
Second Principal Component
First Principal Component
27Discussion
- The inferential power of the good continuation
cues is maximal for neighbouring edgels, falling
steadily as edgel separation increases. - While for neighbouring edgels the parallelism cue
is stronger than the cocircularity cue, this
reverses for edgels separated by 4 edgels or
more, suggesting that estimation noise limits the
utility of the cocircularity cue at small
separations.
28(No Transcript)
29Elder and Goldberg
Luminance
Position
30Elder and Goldberg
Proximity Good Continuation Parallelism
Co-circularity Similarity Brightness
Contrast
31Elder and Goldberg
Proximity Good Continuation Parallelism
Co-circularity Similarity Brightness
Contrast
32Principal Components Analysis
33The Gestalt Psychologists
34Brunswik and Kamiya (1952)
35Resulting Distributions
36Principal Components Analysis
37Rotation Angles
Parallelism Stronger
Cocircularity Stronger
38Distribution Parameters