Title: Mechanisms and Control of Oxidation of Foods
1Mechanisms and Control of Oxidation of Foods
DAVID B. MIN DEPARTMENT of FOOD SCIENCE and
TECHNOLOGY THE OHIO STATE UNIVERSITY
2Oxidation Effects of Foods
? Flavor Quality Consumer
Acceptance
? Nutritional Quality Essential Fatty
Acids
Vitamins ? Functional Quality Proteins and
Lipids ? Health Risks Growth Retardation
Heart
Diseases
Enlargement of Kidney
Carcinogens
3Activation Energy for Chemical Reaction
Reactions
Activation Energy
(Kcal/Mole) Protein Denaturation
100 Nonenzymatic Browning
Reaction 50 Enzyme Catalyzed
Reaction
10-15 Oxidation of Food Components
10-15
41772 Scheele Priestley Discovered
Oxygen 1811 Avogadro Oxygen is a Diatomic
Molecule 1848 Faraday Oxygen is a
Paramagnetic Molecule 1934 Herzberg
Observation of Singlet Oxygen 1969 Foote
Wexler Rediscovered Singlet Oxygen
Oxygen History
5Oxidation of Food Components Triplet
oxygen free radical oxidation Singlet
oxygen oxidation
6Triplet Oxygen Oxidation
7Molecular Orbital of Triplet Oxygen
Molecular
?
Atomic
Atomic
?
?
?
?
2Px 2Py 2Pz
2Pz 2Py 2Px
?
?
Energy
2S
2S
?
8Mechanism of Triplet Oxygen Oxidation
14 13 12 11 10 9
C
H
C
H
C
H
C
H
C
H
C
H
C
H
R
(
C
H
)
C
H
2
2
2
2
3
3
INITIATION
- ? H
13 12 11 10 9
(
C
H
)
C
H
C
H
R
C
H
C
H
C
H
C
H
C
H
2
4
3
2
?
3O2
13 12 11 10 9
(
C
H
)
C
H
C
H
C
H
C
H
C
H
C
H
R
C
H
2
4
3
2
O
O
PROPAGATION
? H
?
913 12 11 10 9
C
H
C
H
C
H
C
H
C
H
C
H
R
(
C
H
)
C
H
2
2
4
3
O
HYDROPEROXIDE DECOMPOSION
O
- ? OH
H
13 12 11 10 9
(
C
H
)
C
H
C
H
C
H
C
H
C
H
C
H
R
C
H
3
2
2
4
O
?
12 11 10 9
O
?
C
C
H
C
H
C
H
C
H
C
H
R
C
C
H
(
C
H
)
H
2
3
2
3
2
H
TERMINATION
? H
C
H
(
C
H
)
C
H
3
2
3
3
10Mechanism of Lipoxygenase in Linolenic Acid
H
H
H
H
H
H
cis
cis
cis
H
C
C
C
C
C
C
H
C
C
CH
H
(CH
)
(
C
H
)
C
O
O
H
2
4
3
.
2
6
H
- H
H
H
H
H
H
cis
H
cis
cis
H
C
C
C
C
C
C
H
C
.
C
CH
(CH
)
H
(
C
H
)
3
2
4
C
O
O
H
2
6
H
H
H
H
cis
cis
H
trans
H
C
C
C
C
H
C
C
C
H
(
C
H
)
.
C
O
O
H
(CH
)
CH
C
2
4
3
2
6
H
3
O
2
H
H
H
H
cis
cis
H
H
C
trans
C
C
C
C
C
C
H
(
C
H
)
C
O
O
H
2
6
CH
(CH
)
C
3
H
2
4
O
O
H
11Protein Oxidation
- Oxidation of amino acid side chains
- Protein-protein cross linkage
- Protein fragmentation
- Volatile compound formation
12Protein Oxidation
Protein cross linkage
R
O
R
O
R
O
P
P
P
P
P
P
N
C
C
N
C
C
N
C
C
O2
H
H
H
H
O
O
H
R
O
- OH
R
O
R
O
H
P
P
P
P
P
P
N
C
C
N
C
C
N
C
C
H
O
H
H
O
H
O
O
H
Peptide bond cleavage
13Peptide Bond Cleavage
H
O
O
H
O
P
C
C
N
H
C
P
Diamide pathway
C
C
N
C
O
R
R
R
1
2
3
H
O
O
O
H
O
P
P
C
C
N
H
C
C
N
H
C
C
R
R
R
1
2
3
H
O
O
O
H
O
?-amidation pathway
P
P
C
C
N
H
C
C
C
C
N
H
2
R
R
R
2
3
1
14Protein Carbonyl Formation from Aldehydes
4-Hydroxy-2-nonenal from lipid oxidation
O
H
O
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
3
2
2
2
2
2
S
P
Protein-cystein -SH
O
H
O
O
H
O
P-lysine -NH2
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
C
H
H
3
2
2
2
2
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
2
3
2
2
2
2
H
N
P
Protein-histidine
O
H
O
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
3
2
2
2
2
2
N
N
P
15Protein Carbonyl Formation from Aldehydes
Malonaldehyde from lipid oxidation react with
protein amino groups (PNH2)
C
H
N
H
P
C
H
N
P
C
H
N
P
C
H
O
C
H
C
H
C
H
2
C
H
2
C
H
O
C
H
O
C
H
O
H
C
H
O
16Formation of Protein Carbonyls from Sugars
Glycation and glycoxidation of sugars and protein
lysyl amino groups produce protein carbonyls.
C
P
N
H
C
N
P
C
O
(
H
C
O
H
)
n
C
O
H
)
n-1
(
H
C
H
O
R
R
(
H
C
O
H
)
n
P
N
H
2
Lysine
R
C
H
N
P
C
H
O
O2
P
N
H
C
O
C
O
2
C
O
H
)
n-1
(
H
C
O
H
)
n-1
(
H
R
R
17Singlet Oxygen Oxidation
18Molecular Orbital of Singlet Oxygen
Molecular
?
Atomic
Atomic
?
?
?
?
2Px 2Py 2Pz
2Pz 2Py 2Px
?
Energy
?
2S
2S
?
?
1S
1S
?
19Comparison of 3O2 and 1O2
3O2 1O2 ENERGY LEVEL
0 22.5 Kcal
NATURE DIRADICAL NO
RADICAL REACTION RADICAL
ELECTRON-RICH
20 Singlet Oxygen Formation
Enzymes
RCOO RCOO
3O2 Sensitizer
Endoperoxides
H2O2 OCI-
Ozone
1O2
H2O2 O2 -
OH- O2 -
H2O2 HO2 -
O2 -
O2 - O2 -
O2 - Y
21Photosensitizers in Foods
? Chlorophyll ? Protoporphyrine of Myoglobin ?
Riboflavin ? Red No. 3
22Chlorophyll
H
C
H
H
C
R
2
C
H
C
H
H
C
2
3
3
N
N
M
chl a, R -CH3
g
H
H
N
N
chl b, R - CHO
C
H
3
H
C
3
O
C
O
C
H
2
3
C
H
2
C
O
2
C
H
C
H
C
H
C
H
3
3
3
3
23Riboflavin
C
O
H
H
2
C
H
O
H
C
H
O
H
C
H
O
H
C
H
2
C
H
N
N
O
3
N
H
N
C
H
3
O
24Excitation and Deactivation of Sensitizers
Excited State
1Sen
K1- 20?108/sec ISC
Fluorescence K 2?108/sec
3Sen
hv
K1- 3?109/sec
Phosphorescence
3O2
K10- 104/sec
1Sen
Singlet Oxygen
Ground State
25Singlet Oxygen Trapping
O
O
CH3
1O2
H3C
H3C
CH3
N
CH3
N
H3C
H3C
CH3
H
O
TMPD
TAN
26Electron Spin Resonance Spectrum of 2,2,6,6-
Tetramethyl- 4 -Piperidone-N-Oxyl (TAN)
3370 G 3390 G
3410 G
27Reaction of 3O2 and 1O2 with Linoleic Acid
OOH
.
3O
2
R
R
2
R
1
R
R
2
R
1
2
1
OOH
1O
O
2
R
R
R
2
1
R
H
O
2
1
28Singlet Oxygen Oxidation in Foods
29Singlet Oxygen Oxidation of Protein
30Sulfide Compounds Formation from Protein
O
O
-
-
Protein
C
H
C
H
S
C
H
Protein
1
C
H
C
H
S
C
H
2
3
O
2
2
3
2
2
O
O
O
H
-
Protein
Protein-
C
H
C
H
S
C
H
C
H
C
H
S
C
H
O
H
2
3
2
3
O
Protein-
Protein-
C
H
C
H
S
C
H
C
H
C
H
O
S
C
H
2
3
2
3
2
C
H
S
S
C
H
S
C
H
3
3
3
Disproportionation
2
S
C
H
S
S
C
H
C
C
H
S
C
H
C
H
S
S
H
3
3
3
3
3
3
31H2S Formation from Protein
O
O
-
-
Protein
1
C
H
S
H
Protein
C
H
S
H
O
2
2
2
O
O
O
H
-
-
Protein
H
H
C
H
S
H
Protein
S
O
H
C
H2S2
-
O
( )
2
Protein
H
C
S
H
S
H
Disproportionation
2H2S2
2H2S S2
32Protein Histidine Tryptophane
1O2
Protein
-
C
H
N
2
Protein
-
C2N2H3
C
H
C
O
O
H
2
N
H
Protein
CH2-COHNCNH2CO
Protein
-
C
H
Protein
-
2
C
H
1O2
2
O
N
C
H
O
N
H
H
Foote, C.S, CRC Critical Rev.
33Singlet Oxygen Oxidation of Soy Protein
Concentrate
Volatile compounds in soy protein concentrate
under light and dark at 30?C for 6 days were
studied by a combination of solid phase
microextraction -gas chromatography-mass
spectrometry and sensory evaluation.
34Volatile Compounds Formation at 30º C for 6 Days
Dark Storage 60 Increased Light Storage 300
Increased and 1-Pentanol, 2-heptenal, and
2-pentyl furan by singlet oxygen oxidation
35Singlet Oxygen Oxidation of Soybean Oil
36Reversion Flavor Compounds from Soybean Oil
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
3
2
2
3
2
2
O
O
2-(2-pentenyl)-furan
2-(1-pentenyl)-furan
37Reversion Flavor from Linolenic Acid by Singlet
Oxygen Oxidation
1O2
C
H
C
H
C
O
O
H
(
C
H
)
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
2
2
6
2
3
2
2
O
O
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
2
3
2
2
1O2
O
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
2
3
2
2
O
O
O
38C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
2
3
2
2
O
O
O
H
- OH
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
C
H
2
3
2
2
O
O
C
H
C
H
C
H
C
H
C
H
C
C
H
C
H
C
H
3
2
2
2
2
O
O
C
H
C
H
C
H
C
H
C
H
C
C
H
C
H
C
H
3
2
2
O
H
O
H
- H2O
2-(2-pentenyl)-furan
C
H
C
H
C
H
C
H
C
H
3
2
2
O
39Singlet Oxygen Oxidation of Vitamin D
40Mass Spectrum of Vitamin D2 1O2 Oxidation
Product
41Singlet Oxygen Oxidation of Vitamin D
C
H
3
H
C
C
H
3
3
H
C
3
C
H
3
303
O
H
H
H
O
H
C
H
3
O
H
C
H
3
H
O
128
H
O
5,6 Diol of Vitamin D2
42Headspace Oxygen Determination by Gas
Chromatography
Headspace Analysis Sample Bottle
43Light Storage Box of Samples
44Chlorophyll Effect on the Headspace Volatile
Compounds of Soybean Oil under Light at 10 oC
Headspace Volatile Content (electronic
unit)
Storage in Hours
45Carotenoids
C
H
O
O
Canthaxanthin
O
46Effects of ?-Apo-8-Carotenal, ?-Carotene or
Canthaxanthin on Soybean Oil Oxidation
Peroxide Value (meq/kg oil)
Storage Time (hr)
47Schematic Diagram for the Formation of Product AO2
ISC
3O2
A
Sen
1O2
1Sen
A O2
3Sen
kd
Q
Q
Sen
kq
kox-Q
Sen
3O2
3O2
Q
O2
dAO2
Ko3O2
k rA
K
Ko3O2kQQ
k rA (kox-Q kq)Q kd
dt
Singlet Oxygen Oxidation Quenching Mechanism of
Caroteinoids by Steady State Kinetic Equation
48Singlet Oxygen Quenching
-1
K
Slope
Q4
?
?
1/AO2
Q3
Intercept K-1
?
?
?
?
Q2
?
?
1 K
?
Q1
?
?
?
1/A
49Quenching Mechanism of b-Carotenene
1/ Peroxide Value ( 1/ M )
50Total Quenching Rate Constant (KqKox-Q) of
Singlet Oxygen by Carotenoids
Carotenoids Number of Conjugated
Quenching Rate Double Bonds
Constants ( M-1 sec-1) ?
-apo-8- Carotenal 10
2.86 ? 109 ? -
Carotene 11
4.60 ?
109 Canthaxanthin 13
1.12 ?
1010
51Singlet Oxygen Quenching Mechanism of Carotenoid
1O2 1?-Carotene 3O2 3?-Carotene
3 ?-Carotene
1?-Carotene
Energy Transfer
Radiationless Transfer
52Let us stand up and stretch
53Antioxidants
54Characteristics of Free Radicals in Oxidation
-
O2 Superoxide anion An oxygen-centered
radical. Limited reactivity HO
Hydroxyl A highly reactive oxygen-centered
radical. Indeed attacks all molecules in
human body RO2 Peroxyl Oxygencentered
radicals formed during the RO Alkoxy
breakdown of organic peroxides
55Linoleic Acid Oxidation by Triplet Oxygen
14
13 12 11 10 9
C
H
C
H
C
H
C
H
C
H
C
H
C
H
R
(
C
H
)
C
H
2
2
2
2
3
3
INITIATION
- H
R (CH2)6-COOH
12 11 10 9
(
C
H
)
C
H
C
H
C
H
C
H
C
H
C
H
R
C
H
2
4
3
2
O
2
12 11 10 9
(
C
H
)
C
H
C
H
C
H
C
H
C
H
C
H
R
C
H
2
4
3
2
O
O
PROPAGATION
H
5612 11 10 9
C
H
C
H
C
H
C
H
C
H
C
H
R
(
C
H
)
C
H
2
2
4
3
O
HYDROPEROXIDE
O
- OH
DECOMPOSION
H
12 11 10 9
C
H
R
(
C
H
)
C
H
C
H
C
H
C
H
C
H
C
H
2
2
4
3
O
O
C
C
H
C
H
C
H
C
H
C
H
R
C
H
(
C
H
)
C
H
2
3
2
3
2
H
TERMINATION
H
C
H
(
C
H
)
C
H
(PENTANE)
3
2
3
3
R (CH2)6-COOH
57.
R, RO, ROO, O-2 1O2, -OH, H2O2,Cu, Fe
Antioxidants
Prooxidant Jail
R, RO, ROO, 1O2, O-2, -OH, H2O2, Cu, Fe
58Functions of Antioxidant on Food Oxidation
- Inhibits or slows the free alkyl radical
- formation in the initiation step
- Interrupts the propagation of free radical chain
- Slows the free radical chain reaction rate of
- food oxidation.
59Standard One-Electron Reduction Potential
Compounds E? (mV)
HO , H / H2O 2310 RO , H /
ROH 1600 ROO , H / ROOH 1000 R , H
/ RH 600 Catechol , H /
Catechol 530 ?- Tocopheroxyl , H / ?-
Tocopherol 500 Ascorbate- , H /
Ascorbate 282
60Characteristics of Hydrogen Donating Antioxidants
The major hydrogen donating antioxidants are
monohydroxy or polyhydroxy phenolic compounds
with various ring substitutions. The
antioxidant free radical does not initiate
another free radical due to the delocalized
stabilization of radical electron.
61Effectiveness of Antioxidants
- The difference of one-electron reduction
- potential.
- The stability of antioxidant radicals
- by resonance stabilization of radical
electron. - Antioxidant radicals should not initiate
- another food free radicals.
62Resonance of Antioxidant Radicals
O
H
C
(
C
H
)
3
3
O
C
H
3
RH , ROH , ROOH
R , RO , ROO
.
O
O
.
C
(
C
H
)
C
(
C
H
)
3
3
3
3
O
C
H
O
C
H
3
3
O
O
.
C
(
C
H
)
C
(
C
H
)
3
3
3
3
.
O
C
H
O
C
H
3
3
63Targets of Antioxidant
- Antioxidants can react with peroxyl
radicals rather than alkoxyl radicals. - The most prevalent radical is peroxyl (ROO)
radical. - Peroxyl radical has the lower standard one
electron reduction potential than alkyl or
alkoxyl radical
64Synthetic Antioxidants
Butylatedhydroxyanisole (BHA)
Butylatedhydroxytoluene (BHT)
Tertiary butylhydroquionone (TBHQ)
Propyl gallate
65Natural Antioxidants
- Benefits
- Health implication
- Stability in food system
- Limits
- Characteristic flavor
- Safety test required
66Tocopherols
R
1
H
O
C
H
C
H
C
H
C
H
3
3
3
3
R
O
2
R
3
Tochperols R1 R2 R3 ?-Tocopherol CH3 CH3 CH3
?-Tocopherol CH3 H CH3 ?-Tocopherol H CH3 CH3
d-Tocopherol H H CH3
67Antioxidant Mechanism of Tocopherol
- Transfer of phenolic hydrogen
- Scavenging of singlet oxygen
68Ascorbic Acid
- Hydrogen donation to radicals
- Quenching of singlet oxygen
- Removal of molecular oxygen
- Regenerate tocopherol from tocopherol radicals
- Prooxidant Reduce ferric iron to ferrous
iron
69Ascorbic Acid
C
H
O
H
C
H
O
H
2
C
H
O
H
2
2
H
C
O
H
H
C
O
H
H
C
O
H
O
O
O
O
O
O
- H
- H
H
H
H
O
O
H
O
H
O
O
O
H
L-Ascorbic acid
Dehydroascorbic acid
70Ascorbic Acid and Related Compounds
O
C
H
O
H
2
C
H
O
H
C
H
O
C
(
C
H
)
C
H
2
2
2
14
3
H
C
O
H
H
O
H
C
C
H
O
H
O
O
O
O
O
O
H
H
H
H
O
O
H
O
H
H
O
H
O
O
H
L-Ascorbic Acid
Erythorbic Acid
Ascorbic Palmitate
71Ascorbic acid can act as a prooxidant by reducing
ferric to ferrous ion, which become more active
catalysts of oxidation in the aqueous system.
72Synergistic Effect of Tocopherol Ascorbic Acid
Lipid peroxyradical
gt
H
Lipid hydroperoxide
?-Tocopheryl radical ?
?-Tocopherol
Ascorbic acid
lt
- H
Dehydroascorbic acid
73Antioxidant Sources
74Flavonoids
O
H
O
H
O
H
O
O
H
O
H
O
O
H
O
H
O
G
l
u
c
os
i
de
O
O
H
O
H
Quercetin Flavonols
Cyanidin-3-glucoside Anthocyanins
75Flavonoids
- Secondary products of plant metabolism
- Hydrogen donor to radical compounds
- Metal chelating ability
- Superoxide anion scavengers
- Anthocyanines, catechins, flavones, flavonols,
isoflavone, and proanthocyanidins
76 Vegetables
Cacao beans, Potato, Tomato, Spinach, Legumes,
Garlic, and Seaweed Polyphenolic compounds
77 Fruits and Red Wine
Polyphenolic compounds
78Tea
O
H
O
H
O
H
O
H
O
O
O
H
H
O
O
H
O
H
O
H
O
H
O
H
Epigallocatechin
Epicatechin
79Sesame Seed
O
O
O
O
O
O
O
O
H
O
H
O
C
H
3
Sesamol
Sesamolinol
80Herb and Spice
Sage, Ginger, Green pepper, Lavender and Rosemary
O
H
C
H
3
H
O
O
C
H
3
C
O
C
H
H
C
3
3
Carnosoic Acid
Carnosol
O
H
H
O
O
C
O
H
O
O
H
O
Rosemarinic Acid
O
H
81Reaction Rates of Carnosol and Carnosic Acid
Carnosic acid
O
H
O
H
O
H
O
H
O
O
C
H
O
O
C
LOO
LOOH
3 ? 107 M-1s-1
H
H
Carnosol
O
H
O
H
O
H
O
O
O
LOO
LOOH
C
C
2 ? 106 M-1s-1
O
O
H
H
82Soybean
- Chlorogenic acid, caffeic acid, ferulic acid -
- Metal chelation and singlet oxygen quenching
- Isoflavones - phytoestrogen effects -
- Metal chelation and hydrogen donation
83Soybean
C
O
O
H
H
O
R
O
2
H
O
O
O
H
1
O
H
O
H
Isoflavones
Chlorogenic acid
R1 R2
Genistein OH OH Daidzein H OH
84Ginseng
85Ginseng
C
H
C
H
C
O
O
H
C
H
C
H
C
O
O
H
H
O
H
O
O
H
O
C
H
3
Caffeic acid
Ferulic acid
O
O
H
C
O
O
H
O
H
O
H
H
O
O
H
O
O
C
H
3
Vanillic acid
Kaempferol
86Ginseng
Singlet oxygen quenchers Caffeic acidgt
Kaempferol gt Vanillic acid gt Salicylic acid gt
Ferulic acid Hydrogen donation to radicals
Kaempferol gt Maltol gt Vanillic acid gt Saponin gt
Salicylic acid gt Ferulic acid Metal chelation
activity Kaempferol gt Maltol gt Vanillic acid gt
Ferulic acid gt Caffeic acid
87Maillard Reaction
Reducing Sugars and ?-amino acids
N-glycosylamine or N-fructosylamine
1-Amino-1-deoxy-2-ketose (Amadori intermediate)
or 2-Amino-2-deoxy-1-aldose (Heynes intermediate)
Reductones and dehydroreductones
H2S NH3
Strecker degradation
Amino Acids
Retroaldol condensation
Furans Thiophenes Pyrroles
Hydroxyacetone Hydroxyacetylaldehyde Acetoin Acet
ylaldehyde
Glyoxal Pyruvaldehyde Glycerolaldehyde
Aldehydes ?-aminoketone
(Methional, NH3, H2S)
Heterocyclizaion
Pyrazines Pyridines Oxazoles
Thiazoles Pyrroles
88Antioxidants from Maillard Browning
C
H
3
C
O
Nitrogeneous compounds
C
O
H
C
O
H
C
H
O
H
C
H
S
H
C
H
3
2
C
H
O
H
Ethyl thiol
C
H
O
H
2
Reductone
89Consideration of Antioxidant Selection
90Ideal Antioxidants
- No harmful physiological effects
- No pathological effect
- No carcinogenic potential
- No interactions with enzymes
- No effects of reproduction
- No metabolism rate effect
91- No objectionable flavor, odor, or color
- Effective in low concentration
- Fat-soluble
- Carry-through effect
- Readily-available
- Economical
- Not absorbable by the body
92Thank you
93(No Transcript)
94(No Transcript)
95(No Transcript)
96(No Transcript)
97Multifunctional Antioxidants
98Antioxidant Interactions
- Combination of metal chelator and free radical
- scavenging antioxidants
- Combination of different antioxidants like
- ?- tocopherol and ascorbic acid
99Types of Antioxidants
- Hydrogen donating compounds
- Singlet oxygen quenchers
- Metal chelators
- Antioxidant enzymes
- Oxygen scavengers and reducing agents
100Metal Chelators
101Prooxidant Mechanisms of Metals
k1
Fe3 ROOH Fe2 ROO H Fe2 ROOH Fe3
RO .OH Formations of alkyl free
radical by direct reaction Fe3 RH Fe2
R H Activation of oxygen for
singlet oxygen formation Fe2 3O2 Fe3
O-2 1O2 Formation of hydroxyl
radical Fe2 H2O2 Fe3 OH- OH
k2
k2 ? k1 105
.
102Reaction between Metal and Hydroperoxide
- Rapid Exponential increase in oxidation during
propagation step - Scission of alkoxyl radical to low molecular
weight compounds - Copper is 50 faster than ferrous ion in
decomposing hydrogen peroxide - Ferrous is 105 faster than ferric iron in
decomposing hydrogen peroxide - Ferrous is 1015 times more soluble than ferric
iron
103Metal Chelators
- Phosphoric acid
- Citric acid
- Ascorbic acid
- Ethylene Diamine Tetra Acetate (EDTA)
- Proteins such as transferrin, ovotransferrin
- Amino acids
104Mechanism of Metal Chelators
- Chelators form complex ions or coordination
compounds with metals - Prevention of metal redox cycling
- Occupation of all metal coordination sites
- Formation of insoluble metal complexes
- Steric hindrance of interactions between metals
and lipid intermediates
105Phospholipids
O
O
C
H
O
C
R
O
2
1
C
H
O
C
R
O
2
1
C
H
O
C
R
O
2
C
H
O
C
R
O
2
-
C
H
O
P
O
C
H
C
H
N
H
2
2
2
2
C
H
O
P
O
-
2
-
O
O
Phosphatidyl ethanolamine
Phosphatic acid
106Interaction of Chealator and Metal
O
C
O
C
H
O
2
C
C
H
2
N
O
C
H
2
M
C
H
2
O
N
C
H
C
C
H
2
2
O
O
C
O
Ethylene Diamine Tetra Acetate
107 Oxygen Scavengers
108Oxygen Scavengers and Reducing Agents
- Ascorbic acid
- Ascorbic palmitate
- Erythorbic acid
- Sodium erythorbate
- Sulfites
109Oxygen Scavenger Mechanisms
C
H
O
H
2
H
C
O
H
O
O
½ O
H O
2
H
2
O
O
C
H
S
H
C
H
S
S
C
H
½ O
H O
2
2
3
3
3
O
O
O
O
H
H
O
S
2
H
O
S
O
H
O
110Superoxide Dismutase
- Producing triplet oxygen from superoxide anion
-
.
Superoxide Dismutase
2O
O
2H
3
H
O
2
2
2
2
Catalase
2H
O
3
O
O
2H
2
2
2
2
111Types of Antioxidants
- Hydrogen donating compounds
- Singlet oxygen quenchers
- Metal chelators
- Antioxidant enzymes
- Oxygen scavengers and reducing agents
112Types of Antioxidants
- Hydrogen donating compounds
- Singlet oxygen quenchers
- Metal chelators
- Antioxidant enzymes
- Oxygen scavengers and reducing agents
113Amino Acid, Peptide and Protein
- Glycine, methionine, and lysine in emulsion
- system- antioxidant activity at low
concentration - and high pH.
- Carnosine inhibits the activities of hemoglobin,
- lipoxygenase, iron, peroxyl, and hydroxyl
radical. - Ferritin and tranferritin proteins bind iron
114Polarity of Antioxidants
- Polar antioxidants are more active in bulk oil
- systems
- Hydrophobic antioxidants that are located on
- the interface of lipid/water can protect lipid
- better than hydrophilic antioxidants
115Concentrations
- Compare antioxidants at the same molar
- concentration of active components using
- structurally related reference compounds.
- Consider the concentration ratios of
- catalytic inducers/antioxidants and
- antioxidants/substrates.
116Effects of Antioxidant Polarity in Food Systems
Oil
Water
Air
Water
Oil
Oil
Hydrophobic antioxidant
Hydrophilic antioxidant
117Factors Affecting Partitioning of Antioxidants
- The chemical structure and polarity
- The types of lipid substrate
- The presence of surfactants
- pH
- The composition of the phases
118Possible Future Antioxidants
Antioxidant attached to the packaging materials
119Effects of Protein Oxidation
- Alteration of signal transduction mechanisms
- Transport systems
- Enzyme activities
- Atherosclerosis
- Ischemia-reperfusion injury
- Aging
120Biomarkers of Protein Oxidation
- Protein carbonyls
- Stable amino acid modification
- Protein products of glycation and glycoxidation
121Carotenoids
122Singlet Oxygen Quenching Constant of Carotenoids
Carotenoids Number of Conjugated
Rate Constants
Double Bonds (109 M-1
sec-1) Astaxanthin 13
9.88 Isozeaxanthin
11
7.31 Zeaxanthin 11
7.03 Lycopene
11
6.89 Lutein 10
5.86
123Vitamin D2
124Effect of Vitamin D Concentration on Headspace
Oxygen Loss with 15 ppm Riboflavin
Headspace Oxygen Loss?
Vitamin D (ppm)
0 1 2 4 8 (hrs)
3000 0 9.3aa 14.2ab
18.6ac 26.5ad 6000 0
13.1ba 19.8bb 29.5bc 45.2bd
9000 0 16.4ca
25.1cb 38.8cc 57.3cd
? yellow and white are significant change with
time and vitamin D at plt0.05
1252,2-Thiobis-1,1,3,3-tetramethyl-phenalto
-butylamine nickel
126Effects of bis(di-n-butyldithiocarbamato) nickel
on the headspace oxygen of soyoil containing 3
ppm chlorophyll for 2 hrs
1/ Headspace Oxygen Depletion (ml headspace /
?moles O2)
1/ Oil in Methylene Chloride (1/ M)
127BTC
Intercept Kd/Kr Kd 1.1 ? 104 sec -1 in
methylene chloride Kr 1.38 ? 105 (M-1 sec -1
) Slope Kq Kox-Q/Kr Kq Kox-Q 1.23 ? 109
M-1 sec -1
128Purification of Soybean Oil
Soybean oil
Silicic acid
Sugar-celite
Charcoal-celite
Silicic acid
Vacuum
Purified soybean oil
129Triplet Sensitizer Quenching
Q3
Q2
?
1/ AO2
Q1
?
?
?
?
?
Slope K-1kd(ko3O2 kQQ) /
ko3O2kr Intercept K-1(ko3O2 kQQ) /
ko3O2
?
1/A
130Triplet Sensitizer Quenching Mechanism
-1
dAO2
k rA (kox-Q kq)Q kd
-1
Ko3O2kQQ
K
Ko3O2
k rA
dt
If there is only triplet sensitizer quenching,
the equation is
-1
dAO2
-1
K
k rA
dt
Plot of AO2 -1 vs. A -1 at various Q
131Fragmentation Scheme for 5,6 Epoxide of Vitamin D2
132Singlet Oxygen Quenching Mechanism
-1
dAO2
k rA (kox-Q kq)Q kd
-1
Ko3O2kQQ
K
Ko3O2
k rA
dt
If there is only singlet oxygen quenching, the
equation is
K
Plot of AO2 -1 vs. A -1 at various Q
133Effect of Vitamin C on the Headspace Oxygen of
Vitamin D2
1/ Headspace Oxygen Depletion (ml headspace/
?moles O2)
1/ Vitamin D2 (1/M)
134Determination of Ascorbic Acid Reaction Rate with
Singlet Oxygen
Slope / Intercept 8.1 ?10- 4 M
Kd 2.5 ?10 5 Sec-1 (in water) Kr 3.08 ?10 8
M-1 Sec-1
135Effects of a-, ?-, or ? - tocopherol on the
peroxide of soy oil containing 3 ppm chlorophyll
during light storage
Peroxide Value (meq/kg oil)
Storage time (hrs)
136Effects of a-tocopherol on the oxidation of
soyoil containing 3 ppm chlorophyll
1/ Peroxide (1/ M)
1/ Soybean Oil (1/ M)
137? - Tocopherol
Intercept Kd/Kr Kd 1.1 ? 104 sec -1 in
methylene chloride Kr 1.04 ? 105 (M-1 sec -1
) Slope Kq Kox-Q/Kr Kq Kox-Q 2.7 ? 107
M-1 sec -1
138(No Transcript)
139Protoporphyrin
C
C
H
C
H
C
C
H
3
2
C
C
C
H
HC
N
C
C
H
C
C
C
H
C
3
3
N
Fe
N
C
H
C
C
C
H
C
C
2
N
H
O
O
C
C
H
C
H
2
2
C
H
C
C
H
C
C
C
C
H
H
O
O
C
C
H
C
H
3
2
2
140- Oxidization of histidine to 2-oxohistidine in
- the metal binding site of proteins.
- Oxidation of thiol groups and in particular the
- generation of carbonyl derivatives of amino
acids
141Reaction of Antioxidants with Radicals
R AH RH A
RO AH ROH A
ROO AH ROOH A
142Reaction of Antioxidants with Radicals
143Stability of Antioxidant Radical
O
C
H
3
C
C
H
3
C
H
3
O
C
H
3
144Tocopherol
A chain breaking antioxidant competes with
polyunsaturated lipid for the lipid peroxyl
radicals.
?-Tocopherol ?-Tocopheryl semiquinone ?
Lipid radicals
Lipid radicals
?-Tocopheryl quinone
145Enzymatic Antioxidants
146Glucose Oxidase/Catalase
Glucose Oxidase
2 Glucose 2O2 2H2O 2 Gluconic acid
2H2O2
Catalase
2H2O2 2H2O O2
Glucose Oxidase Catalase
2 Glucose O2 2 Gluconic acid
Oxygen Scavenging
147Superoxide Dismutase
- Superoxide anion participates in oxidative
reactions - Maintaining transition metals in their reduced,
active state - Promoting the release of metals bound to
proteins - Producing singlet oxygen
Superoxide Dismutase
-
3
O
2O
2H
2
2
2H
O
Catalase
O
2H
O
2
2
2
2
148Glutathione Peroxidase
H2O2 2GSH 2H2O GSSG LOOH
2GSH LOH H2O GSSG
GSH Reduced glutathione GSSH Oxidized
glutathione