Title: PowerPoint-Pr
1- motivation (predicted medium effects in the
charm sector)
- first observation of medium modifications of
the ? meson - a.) mass shift
- b.) in-medium width
2Motivation
- QCD-vacuum complicated structure
- characterized by condensates
- in the nuclear medium
- condensates are changed
- change of the hadronic excitation
- energy spectrum
- widespread experimental activities to search for
- in-medium modifications of hadrons
3possible in-medium modifications of hadrons
- in-medium mass shift
- (partial restoration of chiral symmetry,
meson-baryon coupling)
- in-medium broadening of hadron resonances
- (meson-baryon coupling, collisional broadening)
- hadron-nucleus bound states
- (meson-nucleus attractive potential)
4model predictions for in-medium masses of mesons
5predictions in the charm sector
consequences of a dropping D-meson mass
6Model predictions for spectral functions of r and
w mesons
7?-, ?-meson-nucleus potential
K. Saito, K. Tsushima, A.W. Thomas, hep-ph/0506314
predictions within the quark meson coupling model
(QMC)
? E(1s) -39 MeV ? 29 MeV ? E(1s) -100
MeV ? 31 MeV
? E(1s) -56 MeV ? 33 MeV ? E(1s) -118
MeV ? 33 MeV
8Predictions of nuclear bound quarkonium states
- S. Brodsky et al. , PRL 64 (1990) 1011
attractive cc nucleon potential due to multi
gluon exchange ? ?c binding energy to light
nuclei of the order of ? 20 MeV
- Klingl et al., PRL 82 (1999) 3396
QCD sum rules attractive mass shift of ? 5-10
MeV for J/? and ?c
- K. Saito et al., hep-ph/0506314
D- - nucleus bound states (superposition of
Coulomb strong interaction)
D- 208Pb (1s) bound by 24 MeV
9experimental approach dilepton spectroscopy r,
w, f ? ee-
essential advantage no final state interactions
!!
- CLAS (Jlab) C. Tur et al., ?A ??, ?, ? X
- HADES (GSI) planned experiment ?- p ? ? n on
bound proton
10?-mass in nuclei from photonuclear reactions
advantage p0g large branching ratio (8 )
no ?-contribution (? ? ?0? 7 ? 10-4)
disadvantage p0-rescattering
11Expected ? in-medium signal
rescattering of pions in nuclei predominantly
proceeds through ?(1232) excitation scattered
pions have Ekin?150 MeV
no distortion by pion rescattering expected in
mass range of interest
12(No Transcript)
13comparison of meson masses and lineshapes for LH2
and nuclear targets
?0
?
??
No change of mass and lineshape for longlived
mesons (?0, ?, ??) decaying outside nuclei
14inclusive ???0? signal for LH2 and Nb target
D. Trnka et al., PRL 94 (2005)192303
difference in line shape of ? signal for proton
and nuclear target
15D. Trnka, PhD thesis, Univ. Giessen 2006
decomposition of ? signal into in-medium and
vacuum decay contributions
Nb in-medium 45
C in-medium 40
lineshape of vacuum contribution taken from LH2
experiment
shape of in-medium contribution taken from BUU
simulation (P. Mühlich and U. Mosel, NPA
(2006)), assuming m? m0(1 - 0.16 ?/?0)
16access to in-medium ? width
in-medium ? width proportional to ? absorption ?
? ?v?abs
17access to in-medium ? width
in-medium ? width proportional to ? absorption ?
? ?v?abs
normalization to C!! E?1.5 GeV
Comparison to data taken at E? 1.45-1.55 GeV
(D.Trnka et al.(preliminary))
18dependence of ? width on ? momentum
- ? gets broadened in the medium by a factor 10!!
- transparency ratio measurement also possible
for charmed mesons in the - nuclear medium ? ? inel (p) ? ?(p)
(J/?-suppression in AA collisions)
19momentum dependence of ? signal (Nb-target)
D. Trnka et al., PRL 94 (2005)192303
- mass modification only for p?? 0.5 GeV/c
determination of momentum dependence of ? -
nucleus potential requires finer momentum bins
? improved 2nd. generation experiment
20(No Transcript)
21(No Transcript)
22correlation between ? momentum and proton angle
23D. Trnka, PhD thesis, Univ. Giessen 2006
comparison of data on LH2 and C
24(No Transcript)
25population of charmed meson bound states??
? No chance for populating a state bound with 20
MeV!!!
26(allowing for phase space of 3 GeV)
in the laboratory minimum J/?(1s) momentum 4.4
GeV/c ? ?J/?
0.82 Ekin(J/?) 2.28 GeV
no chance of forming a J/?- nucleus bound state!!
27Summary and outlook
major step forward towards understanding the
origin of hadron masses
- first evidence for ? mesic 11B
? second generation experiments with improved
statistics are needed and in preparation
? difficult to transfer techniques and approaches
to the charm sector !!
28CBELSA/TAPS collaboration
29(No Transcript)
30(No Transcript)
31Flatte fit to TAPS data
M. Pfeiffer et al., PRL 94 (2005)
finer energy binning
2 poles m-i?/2 (1487.7-i4.8) MeV
(1483.9-i8.9) MeV
32Prediction of ? mesic states in QMC and QHD models
K. Saito, K. Tsushima, A.W. Thomas,
hep-ph/0506314
33Search for ? mesic states in heavier nuclei
C. Garcia-Recio et al., PLB 550 (2002)
47 unitarized chiral model
preferably only 1s-state 24Mg B12.6 MeV ?33
MeV
experiment at COSY (ENSTAR/Big-Karl) Roy et al.
p 12C ? 3He ?10B p 6Li ? 3He ?4He
experiment at GSI Hayano et al., EPJ A6 (1999)
105 7Li(d,3He)?6He Td 3.6GeV
34Prediction of ? mesic states
E. Marco and W. Weise, PLB 502 (2001) 59
35Ye.S.Golubeva et al., nucl-th/0212074
? (3770)
A. Hayashigaki, PLB487 (2000) 96