Estimation-Quantization Geometry Coding using Normal Meshes - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

Estimation-Quantization Geometry Coding using Normal Meshes

Description:

Statistical model for normal mesh wavelet coefficients. Expectation ... Worst case: sharp crease. Future research. More appropriate distortion metrics in ... – PowerPoint PPT presentation

Number of Views:23
Avg rating:3.0/5.0
Slides: 17
Provided by: sridha6
Learn more at: http://dsp.rice.edu
Category:

less

Transcript and Presenter's Notes

Title: Estimation-Quantization Geometry Coding using Normal Meshes


1
Estimation-Quantization Geometry Coding using
Normal Meshes
  • Sridhar Lavu
  • Hyeokho Choi Richard Baraniuk
  • Rice University

2
3D Surfaces
  • Applications
  • Video games
  • Animations
  • 3D Object modeling
  • e-commerce

3
3D Mesh Representation
  • Mesh representation
  • 3D scan
  • Point clouds
  • Polygon mesh

Geometry 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0
1.0 0.0 0.5 0.5 1.0
Connectivity 0 1 2 2 3 1 0 1 4 1 2 4 2 3 4 3 0 4
  • Problem
  • Massive data size
  • Michelangelos statue of David gt billion
    triangles
  • Goal
  • Compression

4
Multiscale Representation
  • Regular or semi-regular meshes
  • Connectivity ? Base mesh connectivity

5
Wavelet Transform
  • Prediction residuals
  • Wavelet transform
  • 3D coefficients (x,y,z)

6
Normal Meshes
  • Normal mesh representation
  • 3D (x,y,z) ? 1D normal coefficient

7
Wavelet Coefficients
  • Normal wavelet coefficients
  • Tangential wavelet coefficients
  • Goal
  • Model Encode

8
Wavelet Coefficient Model
  • Statistical model for normal mesh wavelet
    coefficients
  • Expectation-Quantization modelLopresto,
    Orchard, Ramchandran, DCC 1997
  • ni N(0,sigmai2)
  • sigmai2 local variance
  • large ? rough region
  • small ? smooth region

9
Details
  • Causal neighborhood
  • Estimate sigmai2
  • Quantized coefficients
  • Modified model
  • Generalized Gaussian density
  • Fixed shape at each scale
  • Estimate variance for each vertex

10
Vertex Scanning Order
  • Each scale
  • Each base triangle

11
Vertex Neighborhood
12
Estimate-Quantization Steps
  • Estimate step
  • Shape parameter
  • Variance parameter
  • R-D optimized quantize step
  • Rate - log probability
  • Distortion MSE of coefficient
  • Pick a lambda R-D operating point
  • Entropy code
  • Arithmetic coder

13
Summary
14
Error Metrics
  • Different surfaces
  • Original mesh surface
  • Normal re-meshing
  • EQ algorithm coded mesh
  • MSE
  • Metro
  • average distance between two meshes
  • Hausdorff distance

15
PSNR Plots
  • 0.5 1dB gain over zero-tree coder Guskov,
    Vidimce, Sweldens, Schroder, SIGGRAPH 2000
  • Similar results with other data sets

16
Conclusions
  • 0.5 1dB gain
  • Over state-of-the-art mesh zerotree coder
  • 3D surfaces much easier to compress than 2D
    images
  • Very smooth (continuous)
  • Worst case sharp crease
  • Future research
  • More appropriate distortion metrics in normal
    mesh wavelet domain
Write a Comment
User Comments (0)
About PowerShow.com