MIMO SVD based Algorithm Implementation Dejan Markovic, Prof' Bob Brodersen

1 / 1
About This Presentation
Title:

MIMO SVD based Algorithm Implementation Dejan Markovic, Prof' Bob Brodersen

Description:

Floating-to-Fixed point conversion ... Unitary X-form. 1. 2. 3. BB-equivalent channel models. V. V. U. U. z'1. z'4. Tx. Rx. Encoding ... –

Number of Views:110
Avg rating:3.0/5.0
Slides: 2
Provided by: Dej89
Category:

less

Transcript and Presenter's Notes

Title: MIMO SVD based Algorithm Implementation Dejan Markovic, Prof' Bob Brodersen


1
MIMO SVD based Algorithm Implementation
Dejan Markovic, Prof. Bob Brodersen
  • Large capacity benefit

MIMO
Tx
Rx
Rx diversity
Traditional system with 1 Tx and 1 Rx antenna
BB-equivalent channel models
y H x z
1.
y U ? V x z
SVD
2.
x' V x y' U y z' U z
  • LMS based blind tracking of SVD components U,?,V
  • U?,V updated every symbol period
  • Periodic feedback every few hundred data symbols
  • Additional blocks required at the Rx side for
    blind tracking

y' ? x' z'
Unitary X-form
3.
Need to know V at Tx and U,? at Rx
  • Floating-to-Fixed point conversion
  • Architectural and circuit optimization of the
    main building blocks
  • Implementation in 0.1mm

Module Compiler estimates _at_ fCLK100MHz, 0.25mm
tracked
Building Blocks
inputs
output
P mW
A mm2
D ns
N
1.
5.9
0.156
7.7
C4?1 , C4?1
C1?1
Cmult_Vd_V
8
ideal
2.
0.4
0.075
2.1
C1?1 , C1?1
C1?1
Csub_d
8
3.
5.6
0.158
6.9
C1?1 , C4?1
C4?1
Cmult_S_V
8
4.
2.2
0.064
7.2
R1?1 , C4?1
C4?1
Cmult_RS_V
8
0.13mm
0.18mm
5.
1.2
0.027
2.0
C4?1 , C4?1
C4?1
Csum_V_V
8
0.25mm
6.
20.1
0.459
12.3
C4?1 , R1?1
C4?1
Cdiv_V_RS
8
Summary of the overall SVD hardware
characteristics
SVD
inputs
output
P mW
A mm2
D ns
N
64
1.74
8.2
R1?1 ,C4?1 , C4?1
C4?1
V_est
8
R1?1 , C4?1
U?_est
8
R4?4 , C4?1
8.2
210
5.54
Optimal step size depends on singular values
Weak subchannel
Write a Comment
User Comments (0)
About PowerShow.com