Title: Kalman Filtering Derivation
1Kalman FilteringDerivation Application
Slides by Damien Jade Duff
2Outline
- Motivation
- Dynamic Observation Models
- Derivation
- Bayesian Tracking Relation
- Linearity Normality
- Prediction Update Procedure
- Worked Example
- Tracking a balloons' position
3Conceptual flowof State (general case)
ut
xt-1
F
xt
f
f
wt
Q
S
h
S
h
zt-1
zt
vt
vt
R
R
4Conceptual flowof State (Linear, Gaussian system)
ut
B
xt-1
F
xt
F
F
wt
Q
S
H
S
H
zt-1
zt
vt
vt
R
R
5Conceptual flowof Estimated State Variance
ut
B
xt-1
xt
F
xt-1
xt
F
F
St-1
St
St
St-1
wt
Q
K
K
S
H
S
H
zt-1
zt
zt-1
zt
vt
vt
St-1
St
R
R
6Worked Example(actual simulation)
w
x
v
z
F 1 1 Q ½ ½ 0 1
½ 1½ H 1 0 R 1
7Worked Example(actual simulation)
w
x 100 0T
v
z
F 1 1 Q ½ ½ 0 1
½ 1½ H 1 0 R 1
8Worked Example(actual simulation)
w 0.25 0.625T
x 100 0T 100.25 0.625T
v -0.25
z 100
F 1 1 Q ½ ½ 0 1
½ 1½ H 1 0 R 1
9Worked Example(actual simulation)
w 0.25 0.625T 0.375 2.875T
x 100 0T 100.25 0.625T 101.25 3.5T
v -0.25 0
z 100 101.25
F 1 1 Q ½ ½ 0 1
½ 1½ H 1 0 R 1
10Worked Example(actual simulation)
w
X 101.25 3.5T
v
Z
F 1 1 Q ½ ½ 0 1
½ 1½ H 1 0 R 1
11Worked Example(actual simulation)
w 0.25 0.25T
X 101.25 3.5T 105.0 3.75T
v 0.375
Z 105.375
F 1 1 Q ½ ½ 0 1
½ 1½ H 1 0 R 1
12Worked Example(actual simulation)
w 0.25 0.25T -1.25 -0.875T
X 101.25 3.5T 105.0 3.75T 107.5
2.875T
v 0.375 1.25
Z 105.375 108.75
F 1 1 Q ½ ½ 0 1
½ 1½ H 1 0 R 1