Adaptive input design for ARX systems - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Adaptive input design for ARX systems

Description:

Evolution of work by Goodwin and Payne, Zarrop, Mehra, S derstr m. LMI formulations ... (Rojas, Welsh, Goodwin and Feuer: Automatica 07 ECC07, Hjalmarsson, M rtensson ... – PowerPoint PPT presentation

Number of Views:20
Avg rating:3.0/5.0
Slides: 23
Provided by: Till7
Category:

less

Transcript and Presenter's Notes

Title: Adaptive input design for ARX systems


1
Adaptive input design for ARX systems
László Gerencsér MTA SZTAKI Hungarian Academy of
Science Budapest, Hugary Håkan
Hjalmarsson School of Electrical
Engineering KTH Stockholm, Sweden
2
Input Design for Identification
Leads to optimization problems that are
typically non-convex and infinite-dimensional,
and dependent on true system
3
Outline
  • A typical input design problem
  • Formulation
  • Mathematical formulation
  • Convexification
  • Finite dimensionalization
  • Characteristics
  • History
  • Adaptive input design
  • Basic idea
  • Parameter convergence
  • Asymptotic distribution
  • Binary signals
  • Numerical illustration
  • Summary

4
Prediction Error Identification
  • Given input/output data from the linear process
  • estimate a model, using a
    Prediction Error criterion
  • Assumptions
  • Variance errors only G0G(q)
  • open loop operation

5
A Typical Input Design Problem
  • Quantity of interest J(G0)

Examples Static gain G0(1),
Impulse response coefficient,
Zero, Pole.
6
Mathematical Formulation
7
Convexification
Schur complement)
Convex in ?ubut infinite dimensional problem
8
Finite dimensionalization
But now infinite dimensional constraint in
?! KYP) LMI constraint
9
Input design. Summary
  • Performance constraint LMI
  • Spectrum positivity constraint LMI
  • Free variables hc0,...,cm,auxiliary variables
    X

General optimal input design problem (SDP)
minc,X V(c,X,?) s.t. M(c,X,?) 0
10
Open loop input design
  • Cooley and Lee Control-relevant experiment
    design for multivariable systems described by
    expansions in orthonormal bases, Automatica 01.
  • Hildebrand and Gevers (2003) Identification for
    control Optimal input design with respect to a
    worst case \nu-gap function,SICON
  • Jansson (2004) Experiment Design with
    Applications in Identification for Control, PhD
    thesis, KTH.
  • Jansson and Hjalmarsson (2005) Input Design via
    LMIs Admitting Frequency-wise Model
    Specifications in Confidence Regions, IEEE Trans.
    Automatic Control 2005,
  • Bombois, Scorletti, Gevers, Hildebrand and Van
    den Hof Least costly identification experiment
    for control, Automatica 07.
  • Evolution of work by Goodwin and Payne, Zarrop,
    Mehra, Söderström
  • LMI formulations
  • Wide class of objective functions and model
    quality constraints
  • Frequency-by-frequency constraints
  • Quality specifications in confidence ellipsoids

11
Adaptive input design
minc,X V(c,X,?) s.t. M(c,X,?) 0
  • True system parameter ? is unknown
  • Robust designs ? 2 ?
  • (Rojas, Welsh, Goodwin and Feuer Automatica 07
    ECC07, Hjalmarsson, Mårtensson and Wahlberg SYSID
    06, Mårtensson and Hjalmarsson SYSID 06)
  • Adaptive designs
  • Certainty equivalence approach
  • On-line parameter estimation
  • On-line input design adaptation
  • (Lindqvist and Hjalmarsson CDC01, Gerenscér and
    Hjalmarsson CDC05)

12
Adaptive input design
Adaptive
Adaptive control but with non-standard cost
function!
13
Insights
  • Ensure persistence of excitation )
  • Parameter convergence at suff. rate )
  • Filter quickly close to optimal )
  • Off-line accuracy

14
A result by Lai and Wei
  • Rn?k1n ?k?kT
  • ?min (Rn) ! 1
  • log ?max (Rn) o( ?min(Rn))
  • )

15
Parameter convergence
Result (?n-?)O(log(n)/n) w.p.1
  • Conditions
  • Stable ARX-system A(q)ynq-1B(q)unen
  • Least squares estimation in regression model
    yn?nT?en
  • Input generated by an m-th order FIR-filter
    unFn(q)wn? fn,i wn-i

) the cis can be taken as auto-correlations of
input
  • 0lt? fn,0 8 n 0
  • 1gtKf fn,i 8 n 0, i1,...,m (w.p. 1)

(simple to ensure by adding 0ltcmin c0 cmaxlt1
constraints)
16
Asymptotic distribution
Result n1/2(?n-?) N(0,P) where P is the
asymptotic covariance matrix of the least squares
estimate when unF(q,?)wn
17
Extension to binary signals
unsgn(? fn,j wn-j)
  • Result
  • Convergence
  • Asymptotic distribution
  • same as before
  • Conditions
  • As before but conditions on fn,j relaxed to
  • fn,0? 0 8 n 0 w.p. 1

18
Numerical illustration L2-gain estimation
  • Estimation of L2-system gain G221/(2?) s
    G(ej?)2d?
  • Input design problem
  • min E un2
  • s.t. Var(G(?n)22) ?

19
Numerical illustration Results
Parameter convergence
20
Numerical illustration Results
Variance of L_2-gain estimate as function of
sample size
Solid line Variance of adaptive scheme (Monte
Carlo simulations) Dotted line Theoretical
value of asymptotic variance using optimal filter
21
Summary
  • Adaptive approach to handle unknown system
    description
  • Certainty equivalence principle
  • ARX system / FIR input filter
  • Parameter convergence
  • Asymptotically, in the sample size, the same
    accuracy as the optimal off-line approach where
    knowledge of the true system is used.

22
Thank you for your attention!
Write a Comment
User Comments (0)
About PowerShow.com