Title: Motif%20Finding
1Motif Finding
- PSSMs
- Expectation Maximization
- Gibbs Sampling
2Complexity of Transcription
3Representing Binding Sites for a TF
Set of binding sites AAGTTAATGA CAGTTAATAA GAGTT
AAACA CAGTTAATTA GAGTTAATAA CAGTTATTCA GAGTTAATAA
CAGTTAATCA AGATTAAAGA AAGTTAACGA AGGTTAACGA ATGTTG
ATGA AAGTTAATGA AAGTTAACGA AAATTAATGA GAGTTAATGA A
AGTTAATCA AAGTTGATGA AAATTAATGA ATGTTAATGA AAGTAAA
TGA AAGTTAATGA AAGTTAATGA AAATTAATGA AAGTTAATGA AA
GTTAATGA AAGTTAATGA AAGTTAATGA
- A set of sites represented as a consensus
- VDRTWRWWSHD (IUPAC degenerate DNA)
4Nucleic acid codes
code description
A Adenine
C Cytosine
G Guanine
T Thymine
U Uracil
R Purine (A or G)
Y Pyrimidine (C, T, or U)
M C or A
K T, U, or G
W T, U, or A
S C or G
B C, T, U, or G (not A)
D A, T, U, or G (not C)
H A, T, U, or C (not G)
V A, C, or G (not T, not U)
N Any base (A, C, G, T, or U)
5From frequencies to log scores
w matrix
f matrix
A 5 0 1 0 0 C 0 2 2 4 0 G 0 3 1 0
4 T 0 0 1 1 1
A 1.6 -1.7 -0.2 -1.7 -1.7 C -1.7 0.5
0.5 1.3 -1.7 G -1.7 1.0 -0.2 -1.7 1.3 T
-1.7 -1.7 -0.2 -0.2 -0.2
f(b,i) s(N)
Log ( )
p(b)
6TFs do not act alone
http//www.bioinformatics.ca/
7PSSMs for Liver TFs
HNF3
HNF1
HNF4
C/EBP
8PSSMs for Helix-Turn-Helix Motif
9Promoter
10Promoter Weight Matrices (PWM)
11E.Coli PWMs
12Motif Logo
1234567 TGGGGGA TGAGAGA TGGGGGA TGAGAGA TGAGGGA
Position
- Motifs can mutate on less important bases.
- The five motifs at top right have mutations in
position 3 and 5. - Representations called motif logos illustrate the
conserved regions of a motif.
http//weblogo.berkeley.edu http//fold.stanford.e
du/eblocks/acsearch.html
13Example Calmodulin-Binding Motif
(calcium-binding proteins)
14Sequence Motifs
http//webcourse.cs.technion.ac.il/236523/Winter20
05-2006/en/ho_Lectures.html
15Regulatory Motifs
- Transcription Factors bind to regulatory motifs
- Motifs are 6 20 nucleotides long
- Activators and repressors
- Usually located near target gene, mostly upstream
16Challenges
- How to recognize a regulatory motif?
- Can we identify new occurrences of known motifs
in genome sequences? - Can we discover new motifs within upstream
sequences of genes?
17Motif Representation
- Exact motif CGGATATA
- Consensus represent only deterministic
nucleotides. - Example HAP1 binding sites in 5 sequences.
- consensus motif CGGNNNTANCGG
- N stands for any nucleotide.
- Representing only consensus loses information.
How can this be avoided?
CGGATATACCGG CGGTGATAGCGG CGGTACTAACGG CGGCGGTAACG
G CGGCCCTAACGG ------------ CGGNNNTANCGG
18PSPM Position Specific Probability Matrix
- Represents a motif of length k (5)
- Count the number of occurrence of each
nucleotide in each position
1 2 3 4 5
A 10 25 5 70 60
C 30 25 80 10 15
T 50 25 5 10 5
G 10 25 10 10 20
19PSPM Position Specific Probability Matrix
- Defines PiA,C,G,T for i1,..,k.
- Pi (A) frequency of nucleotide A in position i.
1 2 3 4 5
A 0.1 0.25 0.05 0.7 0.6
C 0.3 0.25 0.8 0.1 0.15
T 0.5 0.25 0.05 0.1 0.05
G 0.1 0.25 0.1 0.1 0.2
20Identification of Known Motifs within Genomic
Sequences
- Motivation
- identification of new genes controlled by the
same TF. - Infer the function of these genes.
- enable better understanding of the regulation
mechanism.
21PSPM Position Specific Probability Matrix
- Each k-mer is assigned a probability.
- Example P(TCCAG)0.50.250.80.70.2
1 2 3 4 5
A 0.1 0.25 0.05 0.7 0.6
C 0.3 0.25 0.8 0.1 0.15
T 0.5 0.25 0.05 0.1 0.05
G 0.1 0.25 0.1 0.1 0.2
22Detecting a Known Motif within a Sequence using
PSPM
- The PSPM is moved along the query sequence.
- At each position the sub-sequence is scored for a
match to the PSPM. - Example
- sequence ATGCAAGTCT
1 2 3 4 5
A 0.1 0.25 0.05 0.7 0.6
C 0.3 0.25 0.8 0.1 0.15
T 0.5 0.25 0.05 0.1 0.05
G 0.1 0.25 0.1 0.1 0.2
23Detecting a Known Motif within a Sequence using
PSPM
- The PSPM is moved along the query sequence.
- At each position the sub-sequence is scored for a
match to the PSPM. - Example
- sequence ATGCAAGTCT
- Position 1 ATGCA 0.10.250.10.10.61.510-4
1 2 3 4 5
A 0.1 0.25 0.05 0.7 0.6
C 0.3 0.25 0.8 0.1 0.15
T 0.5 0.25 0.05 0.1 0.05
G 0.1 0.25 0.1 0.1 0.2
24Detecting a Known Motif within a Sequence using
PSPM
- The PSPM is moved along the query sequence.
- At each position the sub-sequence is scored for a
match to the PSPM. - Example
- sequence ATGCAAGTCT
- Position 1 ATGCA 0.10.250.10.10.61.510-4
- Position 2 TGCAA 0.50.250.80.70.60.042
1 2 3 4 5
A 0.1 0.25 0.05 0.7 0.6
C 0.3 0.25 0.8 0.1 0.15
T 0.5 0.25 0.05 0.1 0.05
G 0.1 0.25 0.1 0.1 0.2
25Detecting a Known Motif within a Sequence using
PSSM
- Is it a random match, or is it indeed an
occurrence of the motif? - PSPM -gt PSSM (Probability Specific Scoring
Matrix) - odds score matrix Oi(n) where n? A,C,G,T for
i1,..,k - defined as Pi(n)/P(n), where P(n) is background
frequency. - Oi(n) increases gt higher odds that n at position
i is part of a real motif.
26PSSM as Odds Score Matrix
- Assumption the background frequency of each
nucleotide is 0.25. - Original PSPM (Pi)
- Odds Matrix (Oi)
- Going to log scale we get an additive score,Log
odds Matrix (log2Oi)
1 2 3 4 5
A 0.1 0.25 0.05 0.7 0.6
1 2 3 4 5
A 0.4 1 0.2 2.8 2.4
1 2 3 4 5
A -1.322 0 -2.322 1.485 1.263
27Calculating using Log Odds Matrix
- Odds ? 0 implies random match Odds gt 0 implies
real match (?). - Example sequence ATGCAAGTCT
- Position 1 ATGCA -1.320-1.32-1.321.26-2.7odd
s 2-2.70.15 - Position 2 TGCAA101.681.481.26
5.42odds25.4242.8
1 2 3 4 5
A -1.32 0 -2.32 1.48 1.26
C 0.26 0 1.68 -1.32 -0.74
T 1 0 -2.32 -1.32 -2.32
G -1.32 0 -1.32 -1.32 -0.32
28Calculating the probability of a match
- ATGCAAG
- Position 1 ATGCA 0.15
- Position 2 TGCAA 42.3
- Position 3 GCAAG 0.18
P (1) 0.003 P (2) 0.993 P (3) 0.004
P (i) S / (? S) Example 0.15 /(.1542.8.18)0.0
03
29Building a PSSM
- Collect all known sequences that bind a certain
TF. - Align all sequences (using multiple sequence
alignment). - Compute the frequency of each nucleotide in each
position (PSPM). - Incorporate background frequency for each
nucleotide (PSSM).
30Finding new Motifs
- We are given a group of genes, which presumably
contain a common regulatory motif. - We know nothing of the TF that binds to the
putative motif. - The problem discover the motif.
31Example
Predicting the cAMP Receptor Protein (CRP)
binding site motif
32Extract experimentally defined CRP Binding Sites
GGATAACAATTTCACA AGTGTGTGAGCGGATAACAA AAGGTGTGAGT
TAGCTCACTCCCC TGTGATCTCTGTTACATAG ACGTGCGAGGATGAGA
ACACA ATGTGTGTGCTCGGTTTAGTTCACC TGTGACACAGTGCAAACG
CG CCTGACGGAGTTCACA AATTGTGAGTGTCTATAATCACG ATCGAT
TTGGAATATCCATCACA TGCAAAGGACGTCACGATTTGGG AGCTGGCG
ACCTGGGTCATG TGTGATGTGTATCGAACCGTGT ATTTATTTGAACCA
CATCGCA GGTGAGAGCCATCACAG GAGTGTGTAAGCTGTGCCACG TT
TATTCCATGTCACGAGTGT TGTTATACACATCACTAGTG AAACGTGCT
CCCACTCGCA TGTGATTCGATTCACA
33Create a Multiple Sequence Alignment
GGATAACAATTTCACA TGTGAGCGGATAACAA TGTGAGTTAGCTCAC
T TGTGATCTCTGTTACA CGAGGATGAGAACACA CTCGGTTTAGTTCA
CC TGTGACACAGTGCAAA CCTGACGGAGTTCACA AGTGTCTATAATC
ACG TGGAATATCCATCACA TGCAAAGGACGTCACG GGCGACCTGGGT
CATG TGTGATGTGTATCGAA TTTGAACCACATCGCA GGTGAGAGCCA
TCACA TGTAAGCTGTGCCACG TTTATTCCATGTCACG TGTTATACAC
ATCACT CGTGCTCCCACTCGCA TGTGATTCGATTCACA
34Generate a PSSM
A C G T
1 -0.43 0.1 -0.46 0.55
2 1.37 0.12 -1.59 -11.2
3 1.69 -1.28 -11.2 -1.43
4 -1.28 0.12 -11.2 1.32
5 0.91 -11.2 -0.46 0.47
6 1.53 -1.38 -1.48 -1.43
7 0.9 -0.48 -11.2 0.12
8 -1.37 -1.28 -11.2 1.68
9 -11.2 -11.2 1.73 -0.56
10 -11.2 -0.51 -11.2 1.72
11 -0.48 -11.2 1.72 -11.2
12 1.56 -1.59 -11.2 -0.46
13 -0.51 -0.38 -0.55 0.88
14 -11.2 0.5 0.57 0.13
15 0.17 -0.51 0.12 0.12
16 0.9 -11.2 0.5 -0.48
17 0.17 0.16 0.06 -0.48
18 -0.4 -0.38 0.82 -0.48
19 -1.38 -1.28 -11.2 1.68
20 -1.48 1.7 -11.2 -1.38
21 1.5 -1.38 -1.43 -1.28
35Shannon Entropy
- Expected variation per column can be calculated
- Low entropy means higher conservation
36Entropy
- The entropy (H) for a column is
- a is a residue,
- fa frequency of residue a in a column,
- pa probability of residue a in that column
37Entropy
- entropy measures can determine which evolutionary
distance (PAM250, BLOSUM80, etc) should be used - Entropy yields amount of information per column
(discussed with sequence logos in a bit)
38Log-odds score
- Profiles can also indicate log-odds score
- Log2(observedexpected)
- Result is a bit score
39Matlab
- Multalign
- 1 Enter an array of sequences.
- seqs 'CACGTAACATCTC','ACGACGTAACATCTTCT','AAACG
TAACATCTCGC' - 2 Promote terminations with gaps in the
alignment. - multialign(seqs,'terminalGapAdjust',true)
- ans
- --CACGTAACATCTC--
- ACGACGTAACATCTTCT
- -AAACGTAACATCTCGC
40Matlab
- 3 Compare alignment without termination gap
adjustment. - multialign(seqs)
- ans
- CA--CGTAACATCT--C
- ACGACGTAACATCTTCT
- AA-ACGTAACATCTCGC
41Matlab
- gtgt a'ATATAGGAG','AATTATAGA','TTAGAGAAA'
- gtgt a
- 'ATATAGGAG' 'AATTATAGA' 'TTAGAGAAA'
42Char function
- gtgt cseqchar(a)
- cseq
- ATATAGGAG
- AATTATAGA
- TTAGAGAAA
43Double function
- gtgt intseqdouble(cseq)
- intseq
- 65 84 65 84 65 71 71 65
71 - 65 65 84 84 65 84 65 71
65 - 84 84 65 71 65 71 65 65 65
44double
- gtgt double('A')
- ans
- 65
- gtgt double('C')
- ans
- 67
- gtgt double('G')
- ans
- 71
- gtgt double('T')
- ans
- 84
45Initiate PSPM matrix
- gtgt Pspmzeros(4,length(intseq))
- Pspm
- 0 0 0 0 0 0 0 0
0 - 0 0 0 0 0 0 0 0
0 - 0 0 0 0 0 0 0 0
0 - 0 0 0 0 0 0 0 0
0
46Use a for loop to count each nucleotide at each
position
- gtgt for i 1length(intseq)
- Pspm(1,i)length(find(intseq(,i)65))
- Pspm(2,i)length(find(intseq(,i)67))
- Pspm(3,i)length(find(intseq(,i)71))
- Pspm(4,i)length(find(intseq(,i)84))
- end
- gtgt Pspm
- Pspm
- 2 1 2 0 3 0 2 2
2 - 0 0 0 0 0 0 0 0
0 - 0 0 0 1 0 2 1 1
1 - 1 2 1 2 0 1 0 0
0
47Add pseudocounts
- gtgt PspmpPspm1
- Pspmp
- 3 2 3 1 4 1 3 3
3 - 1 1 1 1 1 1 1 1
1 - 1 1 1 2 1 3 2 2
2 - 2 3 2 3 1 2 1 1
1
48Normalize to get frequencies
- gtgt PspmnormPspmp./repmat(sum(Pspmp),4,1)
- Pspmnorm
- Columns 1 through 7
- 0.4286 0.2857 0.4286 0.1429
0.5714 0.1429 0.4286 - 0.1429 0.1429 0.1429 0.1429
0.1429 0.1429 0.1429 - 0.1429 0.1429 0.1429 0.2857
0.1429 0.4286 0.2857 - 0.2857 0.4286 0.2857 0.4286
0.1429 0.2857 0.1429 - Columns 8 through 9
- 0.4286 0.4286
- 0.1429 0.1429
- 0.2857 0.2857
- 0.1429 0.1429
49Calculate odds score
- gtgt PswmPspmnorm/0.25
- Pswm
- Columns 1 through 7
- 1.7143 1.1429 1.7143 0.5714
2.2857 0.5714 1.7143 - 0.5714 0.5714 0.5714 0.5714
0.5714 0.5714 0.5714 - 0.5714 0.5714 0.5714 1.1429
0.5714 1.7143 1.1429 - 1.1429 1.7143 1.1429 1.7143
0.5714 1.1429 0.5714 - Columns 8 through 9
- 1.7143 1.7143
- 0.5714 0.5714
- 1.1429 1.1429
- 0.5714 0.5714
50Log odds ratio
- gtgt logPswmlog2(Pswm)
- logPswm
- Columns 1 through 7
- 0.7776 0.1926 0.7776 -0.8074
1.1926 -0.8074 0.7776 - -0.8074 -0.8074 -0.8074 -0.8074
-0.8074 -0.8074 -0.8074 - -0.8074 -0.8074 -0.8074 0.1926
-0.8074 0.7776 0.1926 - 0.1926 0.7776 0.1926 0.7776
-0.8074 0.1926 -0.8074 - Columns 8 through 9
- 0.7776 0.7776
- -0.8074 -0.8074
- 0.1926 0.1926
- -0.8074 -0.8074
51Estimate the probability of the given sequence to
belong to the defined PSWM
- gtgt Unknown'TTAAGAAGG'
- Unknown
- TTAAGAAGG
- gtgt intunknowndouble(Unknown)
- intunknown
- 84 84 65 65 71 65 65 71
71
52Get the index of the PSWM for the unknown sequence
- gtgt for i1length(intunknown)
- Afind(intunknown65)
- intunknown(A)1
- Cfind(intunknown67)
- intunknown(C)2
- Gfind(intunknown71)
- intunknown(G)3
- Tfind(intunknown84)
- intunknown(T)4
- end
- gtgt intunknown
- intunknown
- 4 4 1 1 3 1 1 3
3
53Calculate the log odds-ratio of the Unknown
'TTAAGAAGG'
- gtgt logunknownlogPswm(intunknown)
- logunknown
- Columns 1 through 7
- 0.1926 0.1926 0.7776 0.7776
-0.8074 0.7776 0.7776 - Columns 8 through 9
- -0.8074 -0.8074
- gtgt Punknownsum(logunknown)
- Punknown
- 1.0737
54Is this significant score or just random
similarity?
- gtgt cseq
- cseq
- ATATAGGAG
- AATTATAGA
- TTAGAGAAA
- gtgt Unknown
- Unknown
- TTAAGAAGG
55What would be the maximum score?
- gtgt logPswm
- logPswm
- Columns 1 through 7
- 0.7776 0.1926 0.7776 -0.8074
1.1926 -0.8074 0.7776 - -0.8074 -0.8074 -0.8074 -0.8074
-0.8074 -0.8074 -0.8074 - -0.8074 -0.8074 -0.8074 0.1926
-0.8074 0.7776 0.1926 - 0.1926 0.7776 0.1926 0.7776
-0.8074 0.1926 -0.8074 - Columns 8 through 9
- 0.7776 0.7776
- -0.8074 -0.8074
- 0.1926 0.1926
- -0.8074 -0.8074
- gtgt maxscoremax(logPswm)
- maxscore
- Columns 1 through 7
- 0.7776 0.7776 0.7776 0.7776 1.1926
0.7776 0.7776 - Columns 8 through 9
56Write a function using the above statements to
scan a sequence
- Write a function named logodds that calculates
the logs-odd ratio of a given alignment. - Write a function named scanmotif that calls the
logodds to search through a sequence using a
sliding window to calculate the logodds of a
subsequence and store these scores. The function
should allow for selection of a maximum number of
locations that are likely to contain the motif
based on the scores obtained.
57Position Specific Scoring Matrix (PSSM)
- incorporate information theory to indicate
information contained within each column of a
multiple alignment. - information is a logarithmic transformation of
the frequency of each residue in the motif
58PSSMs and Pseudocounts
- Problem PSSMs are only as good as the initial
msa - Some residues may be underrepresented
- Other columns may be too conserved
- Solution Introduce Pseudocounts to get a better
indication
59Pseudocounts
- New estimated probability
- Pca Probability of residue a in column c
- nca count of as in column c
- bca pseudocount of as in column c
- Nc total count in column c
- Bc total pseudocount in column c
60PSSMs and pseudocounts
- probabilities converted into a log-odds form
(usually log2 so the information can be reported
in bits) and placed in the PSSM.
61Searching PSSMs
- value for the first residue in the sequence
occurring in the first column is calculated by
searching the PSSM - the value for the residue occurring in each
column is calculated
62Searching PSSMs
- values are added (since they are logarithms) to
produce a summed log odds score, S - S can be converted to an odds score using the
formula 2S - odds scores for each position can be summed
together and normalized to produce a probability
of the motif occurring at each location.
63Information in PSSMs
- Information theory amount of information
contained within each sequence. - No information amount of uncertainty can be
measured as log220 4.32 for amino acids, since
there are 20 amino acids. For nucleic acid
sequences, the amount of uncertainty can be
measured as log24 2.
64Information in PSSMs
- If a column is completely conserved then the
uncertainty is 0 there is only one choice. - two residues occurring with equal probability --
uncertainty to deciding which residue it is.
65Measure of Uncertainty
66Relative Entropy
- . Relative entropy takes into account overall
composition of the organism being studied - Â
- Ba is background frequency of residue a in the
organism
67PSSM Uncertainty
- Uncertainty for whole model is summed over all
columns
68Sequence Logos
- Information in PSSMs can be viewed visually
- Sequence logos illustrate information in each
column of a motif - height of logo is calculated as the amount by
which uncertainty has been decreased
69Sequence Logos
70Statistical Methods
- Commonly used methods for locating motifs
- Expectation-Maximization (EM)
- Gibbs Sampling
71Expectation-Maximization
- Begin with set of sequences with an unknown
signal in common - Signal may be subtle
- Approximate length of signal must be given
- Randomly assign locations of this motif in each
sequence
72Expectation-Maximization
- Two steps
- Expectation Step
- Maximization Step
73Expectation-Maximization
- Expectation step
- Residue Frequencies for each position calculated
- Residues not in a motif are background
- Frequencies used to determine probability of
finding site at any position in a sequence to fit
motif model
74Maximization Step
- Determine location for each sequence that
maximally aligns to the motif pattern - Once new motif location found for each sequence,
motif pattern is revised in the expectation - E-M continues until solution converges
75TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT CCCACGCA
GCCGCCCTCCTCCCCGGTCACTGACTGGTCCTG TCGACCCTCTGAACCT
ATCAGGGACCACAGTCAGCCAGGCAAG AAAACACTTGAGGGAGCAGATA
ACTGGGCCAACCATGACTC GGGTGAATGGTACTGCTGATTACAACCTCT
GGTGCTGC AGCCTAGAGTGATGACTCCTATCTGGGTCCCCAGCAGGA G
CCTCAGGATCCAGCACACATTATCACAAACTTAGTGTCCA CATTATCAC
AAACTTAGTGTCCATCCATCACTGCTGACCCT TCGGAACAAGGCAAAGG
CTATAAAAAAAATTAAGCAGC GCCCCTTCCCCACACTATCTCAATGCAA
ATATCTGTCTGAAACGGTTCC CATGCCCTCAAGTGTGCAGATTGGTCAC
AGCATTTCAAGG GATTGGTCACAGCATTTCAAGGGAGAGACCTCATTGT
AAG TCCCCAACTCCCAACTGACCTTATCTGTGGGGGAGGCTTTTGA CC
TTATCTGTGGGGGAGGCTTTTGAAAAGTAATTAGGTTTAGC ATTATTTT
CCTTATCAGAAGCAGAGAGACAAGCCATTTCTCTTTCCTCCCGGT AGGC
TATAAAAAAAATTAAGCAGCAGTATCCTCTTGGGGGCCCCTTC CCAGCA
CACACACTTATCCAGTGGTAAATACACATCAT TCAAATAGGTACGGATA
AGTAGATATTGAAGTAAGGAT ACTTGGGGTTCCAGTTTGATAAGAAAAG
ACTTCCTGTGGA TGGCCGCAGGAAGGTGGGCCTGGAAGATAACAGCTAG
TAGGCTAAGGCCAG CAACCACAACCTCTGTATCCGGTAGTGGCAGATGG
AAA CTGTATCCGGTAGTGGCAGATGGAAAGAGAAACGGTTAGAA GAAA
AAAAATAAATGAAGTCTGCCTATCTCCGGGCCAGAGCCCCT TGCCTTGT
CTGTTGTAGATAATGAATCTATCCTCCAGTGACT GGCCAGGCTGATGGG
CCTTATCTCTTTACCCACCTGGCTGT CAACAGCAGGTCCTACTATCGCC
TCCCTCTAGTCTCTG CCAACCGTTAATGCTAGAGTTATCACTTTCTGTT
ATCAAGTGGCTTCAGCTATGCA GGGAGGGTGGGGCCCCTATCTCTCCTA
GACTCTGTG CTTTGTCACTGGATCTGATAAGAAACACCACCCCTGC
76Residue Counts
- Given motif alignment, count for each location is
calculated
77Residue Frequencies
- The counts are then converted to frequencies
78Example Maximization Step
- Consider the first sequence
- TCAGAACCAGTTATAAATTTATCATTTCCTTCTCCACTCCT
- Â
- There are 41 residues 41-61 36 sites to
consider
79MEME Software
- One of three motif models
- OOPS One expected occurrence per sequence
- ZOOPS Zero or one expected occurrence per
sequence - TCM Any number of occurrences of the motif
80Gibbs Sampling
- Similar to E-M algorithm
- Combines E-M and simulated annealing
- Goal Find most probable pattern by sampling from
motif probabilities to maximize ratio of
modelbackground probabilities
81Predictive Update Step
- random motif start position chosen for all
sequences except one - Initial alignment used to calculate residue
frequencies for motif and background - similar to the Expectation Step of EM
82Sampling Step
- ratio of modelbackground probabilities
normalized and weighted - motif start position chosen based on a random
sampling with the given weights - Different than E-M algorithm
83Gibbs Sampling
- process repeated until residue frequencies in
each column do not change - The sampling step is then repeated for a
different initial random alignment - Sampling allows escape from local maxima
84Gibbs Sampling
- Dirichlet priors (pseudocounts) are added into
the nucleotide counts to improve performance - shifting routine shifts motif a few bases to the
left or the right - A range of motif sizes is checked
85Gibbs Sampler Web Interface
- http//bayesweb.wadsworth.org/gibbs/gibbs.html