Title: Optics and Lasers Lecture 3
1Optics and Lasers - Lecture 3
- Optical Resonators storage of light
2Optical Rays
r1
r0
Optical Axis
z0
z1Â
)
(
)
(
r0
r1
r1-r0
r1-r0
z1-z0
z1-z0
3How to model a resonator?
4(No Transcript)
5Ray Matrix representation
)
(
)
ri
(
ro
ri
ro
6Consider instead a sequence of lenses ( a more
symmetric version of the cavity)
f1
f2
f2
f1
f2
f1/2
f1/2
7g-parameters definition
g1 1 - L/R1
g2 1 - L/R2
We will use to find families of like resonators
8Consider instead a sequence of lenses ( a more
symmetric version of the cavity)
f1
f2
f2
f1
f2
f1/2
f1/2
9(
)
(
)
(
)
2 g1g2 -1
ro
2 g2 L
ri
ro
ri
2 g1 g2 - 1
MTOT
For more than one pass (N passes)
(MTOT)N
What does it mean if ?
How do we find an MTOT and that make this
true?
10Solution must be bounded
11Normal Modes
(MTOT)N
lN
ri
l (2 g1g2-1) v4 g1g2 (g1g2-1)
Eigenvalues
If g1g2 is gt 1 or lt 0 then l is real (else l is
complex)
If 1gtg1g2 gt 0, then with remarkable insight you
might substitute
2 g1 g2 - 1 ? cos q
l cos q j sin q Expj q
and hence lN Expj q N
One can always choose N so that q N 2 p k, k ? ?
12Stable Cavities
Goto http//stwww.weizmann.ac.il/lasers/laserweb
See page 19, 20
13Charles Fabry (1867-1945) Alfred
Perot (1863-1925),
14FP Cavities
15An example Fabry-Pérot Etalon
Ai
B1
B2
B3
B4
q
q
A1
A2
A3
A4
Traditional Plane-parallel plate with reflecting
coatings Modern plane and curved surfaces facing
each other with adj. gap
16Partial waves
d 4 p n l cos q / l
Ai
B1
B2
B3
B4
q
r,t
q
l
r,t
A1
A2
A3
A4
t2Ai
t2r4e2jdAi
t2r2ejdAi
?Ak t2 (1r2ejd r4e2jd..) Ai
t2/(1-r2 ejd) Ai
17Power Transmitted
It/Ii At At
It (1-R)2
Ii
(1-R)2 4R sind/22
18Maxima in Transmission
when d 2 p m i.e. 4 p n l cosq/l 2 p m
nm m c
In frequency terms
2 n l Cosq
Free Spectral Range Or Fundamental mode
spacing Or longitudinal mode spacing Or axial
mode spacing
c
Dv nm1-nm
2 n l Cosq
19Power Transmitted
It/Ii At At
It (1-R)2
Ii
(1-R)2 4R sind/22
20Width of Resonance
when sin(d-2mp/2)2 (1-R)2/4R i.e. Dn1/2
c/(2 p n l cosq) (1-R)/vR Dn/(p)
(1-R)/vR
BW
Rewriting
Finesse
Dn
p vR
F
(1-R)
Dn1/2
21Finesse
FSR (Dn in Notes)
F
Dn1/2
FSR
BW
FREQUENCY
22(No Transcript)
23Sams Cavity the spacer
Measuring the length of space
24The cavity assembled
25Measuring Sams Cavity
10cm long BW 80kHz FSR 1.5GHz Finesse
19, 000 R 99.984 He finds the centre to
10Hz or so
10-14 m equivalent measurement i.e. an atomic
nucleus
26FPs as Spectrum Analyzers the ultimate prisms
27Using a FP cavity to split up light
28FP Cavities
29FP 1
90
DnFSR
p vR
F
(1-R)
Dn1/2
90
DnFSR c/(2 L)
Dn1/2 DnFSR / F c/(2 L F)
99
30FP2
Too Long!
R90
R99
31FPs as OSAs
Choose the FP characteristics for an OSA on the
basis of the following
1. Make it short enough so that the OSA modes are
further apart than the total spectral width of
the incoming signal
2. Make the BW smaller than the smallest
feature of interest