On the Turbulence Spectra of - PowerPoint PPT Presentation

1 / 13
About This Presentation
Title:

On the Turbulence Spectra of

Description:

FOM-Instituut voor Plasmafysica Rijnhuizen', Associatie Euratom-FOM ... a b g fixed by Etot Htot Ftot and kmin kmax. Equilibrium Spectra ... – PowerPoint PPT presentation

Number of Views:28
Avg rating:3.0/5.0
Slides: 14
Provided by: ewest8
Category:

less

Transcript and Presenter's Notes

Title: On the Turbulence Spectra of


1
On the Turbulence Spectra of Electron
Magnetohydrodynamics E. Westerhof, B.N.
Kuvshinov, V.P. Lakhin1, S.S. Moiseev, T.J.
Schep FOM-Instituut voor Plasmafysica
Rijnhuizen, Associatie Euratom-FOM Trilateral
Euregio Cluster, Postbus 1207, 3430 BE
Nieuwegein, The Netherlands Institute of Space
Research of the Russian Academy of
Sciences 117810, Moscow, Russia
1 On leave from RRC Kurchatov Institute, Moscow,
Russia
26th EPS Conference on Controlled Fusion and
Plasma Physics, 14-18 June 1999, Maastricht, The
Netherlands
2
  • 2D electron magnetohydrodynamics EMHD
  • ideal statistical equilibrium spectra
  • scaling symmetries and spectral laws of decaying
    turbulence

Overview
  • finite density perturbations
  • invariants
  • cascade directions
  • energy partitioning
  • a temporal decay law

3
2D EMHD
  • magnetic field representation B B0 ((1b) ez
    ??y ? ez)
  • generalized vorticity W b - L de2 ??2b
    (1-neq(x)/n0)
  • generelized flux Y y - de2 ??2y
  • evolution equations
  • with inertial skin depth de c/wpe
  • with L 1 (wce / wpe)2
  • f,g ez (?f ? ?g)

4
2D EMHD
Finite Density Perturbations
  • finite is the origin of the parameter L 1
    (wce / wpe)2
  • divergence of e- momentum balance
  • Poissons law . . . . . . . . . . . . . . . . .
    .
  • and Amperes law . . . . . . . . . . . . . .

5
2D EMHD
The Invariants
  • Energy . . . . . . . . . .
  • generalized Helicity
  • f arbitrary function of Y
  • generalized Flux . . .
  • g arbitrary function of Y

Eb
Ey
magnetic kinetic internal
6
Ideal Equilibrium Spectra
  • application of equilibrium statistical mechanics
    requires
  • 1 finite dimensional system
  • 2 Liouville theorem (conservation of
    phase space volume)
  • achieved by truncated Fourier series
    representation of fields
  • ? detailed Liouville theorem
    for all kx ky
  • invariants of the truncated system only
    quadratic ones
  • energy E helicity H mean square
    flux F

7
Ideal Equilibrium Spectra
The Canonical Equilibrium Distribution
  • Equilibrium probability density r (1/Z) exp(
    - aE - bH - gF )
  • Lagrange multipliers a b g
    (inverse temperatures)
  • a b g fixed by Etot Htot
    Ftot and kmin kmax
  • Equilibrium Spectra
  • E(kx,ky) (4ak2 2g (1de2k2)) / D
  • H(kx,ky) 2b (1de2k2) (1Lde2k2) / D
  • F(kx,ky) 4a (1de2k2) / D
  • D 4a(ak2 g (1de2k2)) - b2(1de2k2)
    (1Lde2k2)
  • convergence requires D gt 0, and a gt 0

8
Ideal Equilibrium Spectra
Examples of Equilibrium Spectra
de 0.1
de 0.01
energy cascade
squared flux cascade
a g 10, b 1 a g
10, b ?1000
9
Ideal Equilibrium Spectra
Energy Partitioning
  • Eb / Ey ltlt 1 initially fast evolution to near
    equipartition
  • Eb / Ey gt 1 initially ratio increases on
    dissipation time scale

10
Ideal Equilibrium Spectra
Energy Partitioning
  • spectra for Eb and Ey from simulations of
    decaying turbulence

11
Scale Invariance and Spectra
  • both kde ltlt 1, kde gtgt 1 2D EMHD invariant for
    transformations

r a r, t a1-b t, W a1b W,
Y a2b Y
  • kde ltlt 1 E ? b2 (magnetic)
  • perturbations on scale r
  • b(r) r 1b F
  • with F function of invariant(s)
  • e a3b1 e ? b -1/3
  • thus ?b(r) b(r)? ? r4/3 and
  • E(k) ? e2/3 k-7/3
  • kde gtgt 1 E ? v2 (kinetic)
  • perturbations on scale r
  • v(r) r b F
  • with F function of invariant(s)
  • e a3b-1 e ? b 1/3
  • thus ?v(r) v(r)? ? r2/3 and
  • E(k) ? e2/3 k-5/3
  • a la Kolmogorov only invariant is energy
    dissipation rate e
  • agrees with Biskamp et al. (1996) (1999)

12
Scale Invariance and Spectra
Energy Decay Law
  • integrating over inertial range one obtains dE /
    dt - e ? -E3/2
  • solution
  • numerical results agree
  • data from case de 0.3

13
Summary and Conclusions
  • applied equilibrium statistics to ideal 2D EMHD
  • confirm normal energy cascade
  • confirm inverse mean square flux
    cascade, but kde lt 1
  • studied energy partitioning
  • evolution to equipartition
    only for Eb lt Ey initially
  • derived spectral laws from scaling symmetries of
    2D EMHD
  • confirm Biskamp et al.
  • kde gtgt 1, E (k) ?
    k-5/3
  • kde ltlt 1, E (k) ?
    k-7/3
  • obtained temporal decay law,
    confirmed by simulations
Write a Comment
User Comments (0)
About PowerShow.com