Title: On the Turbulence Spectra of
1On the Turbulence Spectra of Electron
Magnetohydrodynamics E. Westerhof, B.N.
Kuvshinov, V.P. Lakhin1, S.S. Moiseev, T.J.
Schep FOM-Instituut voor Plasmafysica
Rijnhuizen, Associatie Euratom-FOM Trilateral
Euregio Cluster, Postbus 1207, 3430 BE
Nieuwegein, The Netherlands Institute of Space
Research of the Russian Academy of
Sciences 117810, Moscow, Russia
1 On leave from RRC Kurchatov Institute, Moscow,
Russia
26th EPS Conference on Controlled Fusion and
Plasma Physics, 14-18 June 1999, Maastricht, The
Netherlands
2- 2D electron magnetohydrodynamics EMHD
- ideal statistical equilibrium spectra
- scaling symmetries and spectral laws of decaying
turbulence
Overview
- finite density perturbations
- invariants
- cascade directions
- energy partitioning
- a temporal decay law
32D EMHD
- magnetic field representation B B0 ((1b) ez
??y ? ez) - generalized vorticity W b - L de2 ??2b
(1-neq(x)/n0) - generelized flux Y y - de2 ??2y
- evolution equations
- with inertial skin depth de c/wpe
- with L 1 (wce / wpe)2
- f,g ez (?f ? ?g)
42D EMHD
Finite Density Perturbations
- finite is the origin of the parameter L 1
(wce / wpe)2
- divergence of e- momentum balance
- Poissons law . . . . . . . . . . . . . . . . .
. - and Amperes law . . . . . . . . . . . . . .
52D EMHD
The Invariants
- Energy . . . . . . . . . .
- generalized Helicity
- f arbitrary function of Y
- generalized Flux . . .
- g arbitrary function of Y
Eb
Ey
magnetic kinetic internal
6Ideal Equilibrium Spectra
- application of equilibrium statistical mechanics
requires - 1 finite dimensional system
- 2 Liouville theorem (conservation of
phase space volume) - achieved by truncated Fourier series
representation of fields - ? detailed Liouville theorem
for all kx ky - invariants of the truncated system only
quadratic ones - energy E helicity H mean square
flux F
7Ideal Equilibrium Spectra
The Canonical Equilibrium Distribution
- Equilibrium probability density r (1/Z) exp(
- aE - bH - gF ) - Lagrange multipliers a b g
(inverse temperatures) - a b g fixed by Etot Htot
Ftot and kmin kmax - Equilibrium Spectra
- E(kx,ky) (4ak2 2g (1de2k2)) / D
- H(kx,ky) 2b (1de2k2) (1Lde2k2) / D
- F(kx,ky) 4a (1de2k2) / D
- D 4a(ak2 g (1de2k2)) - b2(1de2k2)
(1Lde2k2) - convergence requires D gt 0, and a gt 0
8Ideal Equilibrium Spectra
Examples of Equilibrium Spectra
de 0.1
de 0.01
energy cascade
squared flux cascade
a g 10, b 1 a g
10, b ?1000
9Ideal Equilibrium Spectra
Energy Partitioning
- Eb / Ey ltlt 1 initially fast evolution to near
equipartition - Eb / Ey gt 1 initially ratio increases on
dissipation time scale
10Ideal Equilibrium Spectra
Energy Partitioning
- spectra for Eb and Ey from simulations of
decaying turbulence
11Scale Invariance and Spectra
- both kde ltlt 1, kde gtgt 1 2D EMHD invariant for
transformations
r a r, t a1-b t, W a1b W,
Y a2b Y
- kde ltlt 1 E ? b2 (magnetic)
- perturbations on scale r
- b(r) r 1b F
- with F function of invariant(s)
- e a3b1 e ? b -1/3
- thus ?b(r) b(r)? ? r4/3 and
- E(k) ? e2/3 k-7/3
- kde gtgt 1 E ? v2 (kinetic)
- perturbations on scale r
- v(r) r b F
- with F function of invariant(s)
- e a3b-1 e ? b 1/3
- thus ?v(r) v(r)? ? r2/3 and
- E(k) ? e2/3 k-5/3
- a la Kolmogorov only invariant is energy
dissipation rate e
- agrees with Biskamp et al. (1996) (1999)
12Scale Invariance and Spectra
Energy Decay Law
- integrating over inertial range one obtains dE /
dt - e ? -E3/2 - solution
- numerical results agree
- data from case de 0.3
13Summary and Conclusions
- applied equilibrium statistics to ideal 2D EMHD
- confirm normal energy cascade
- confirm inverse mean square flux
cascade, but kde lt 1 - studied energy partitioning
- evolution to equipartition
only for Eb lt Ey initially - derived spectral laws from scaling symmetries of
2D EMHD - confirm Biskamp et al.
- kde gtgt 1, E (k) ?
k-5/3 - kde ltlt 1, E (k) ?
k-7/3 - obtained temporal decay law,
confirmed by simulations