Solid Propellant Micro-rockets: Application, Design and Fabrication - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Solid Propellant Micro-rockets: Application, Design and Fabrication

Description:

Ac/At = 16 (chamber diam. = 1.0mm) Subsonic under atmospheric, sonic under vacuum ... Ac/At = 60 (chamber diam. = 0.85mm) Sonic under all conditions. Thrust ... – PowerPoint PPT presentation

Number of Views:297
Avg rating:3.0/5.0
Slides: 23
Provided by: sist6
Category:

less

Transcript and Presenter's Notes

Title: Solid Propellant Micro-rockets: Application, Design and Fabrication


1
Solid Propellant Micro-rockets Application,
Design and Fabrication
  • ME 381 Final Presentation
  • 12/12/02
  • Northwestern University
  • Nik Hrabe
  • Albert Hung
  • Josh Mehling
  • Arno Merkle

2
Motivation
  • Mechanical-based MEMS
  • High thrust-to-weight ratio
  • Guidance systems
  • Miniature satellites
  • Integrated sensing systems (Smart Dust)

3
Outline
  • Microrocket Comparisons
  • Turbine Engine
  • Gaseous Propellant Rocket
  • Solid Propellant Rocket
  • Case Study Solid Propellant Rocket
  • Fabrication
  • Materials Considerations
  • Geometric Considerations
  • Performance
  • Conclusions

4
3 Major Categories of Micro-Rocket
  • Turbine Engine
  • Gaseous Propellant Rocket
  • Solid Propellant Rocket

5
Micro Gas Turbine Engine
  • Characteristics
  • 2 cm x 2 cm x 4 mm
  • Advantages
  • Well Tested
  • Disadvantages
  • Moving parts
  • External Fuel Supply Required
  • Complicated Design and Fabrication
  • Space Applications are Limited

6
Micro Gas Turbine Engine
7
Gaseous Propellant Rocket
  • Characteristics
  • 18 mm x 13.5 mm x 3 mm
  • Thrust-to-Weight Ratio 851
  • Advantages
  • No Moving Parts
  • Efficient and Powerful
  • Disadvantages
  • External Fuel Supply Required
  • Slow Fabrication Process

8
Gaseous Propellant Rocket
9
Solid Propellant Rocket
  • Characteristics
  • 1 mm x 1 mm x 1 mm
  • Energy Density 5 J/mm3
  • Advantages
  • No Moving Parts
  • Self Contained Fuel Supply
  • Preliminary Space Tested (STS-93, July 1999)
  • Straightforward Fabrication Process
  • Disadvantages
  • 1 Time Use Only

10
Solid Propellant Rocket
11
Case Study Solid Propellant Microrocket
12
Fabrication
  • Microheater/ Convergent
  • Propellant Chamber
  • Divergent
  • Assembly of Parts
  • propellant filling
  • epoxy bonding of components

Rossi, C., et al., Design, fabrication and
modeling of solid propellant microrocket-applicati
on to micropropulsion, Sensors and Actuators A,
vol. 99, (2002) pgs. 125-133
13
Microheater/Convergent
Highlights
  • Microheater
  • Wet oxide growth
  • LPCVD SiN1.2
  • LPCVD Poly-Si for resistor
  • CVD gold electrical pads
  • Convergent
  • KOH anisotropic etch

Microheater
14
Propellant Chamber
Highlights
  • DRIE
  • ASE (SF6, C4F8)

15
Divergent
Highlights
  • Oxide growth
  • Anisotropic Etch
  • 45wt KOH
  • 80C

Si
16
Assembly of PartsPropellant Filling
Highlights
  • Localized Vacuum
  • consideration of air pockets

Rossi, C., et al., Realization and performance
of thin SiO2/ SiNx membrane for microheater
applications, Sensors and Actuators A, vol. 64,
(1998) pgs 241-245
17
Assembly of Parts Epoxy Bonding
Highlights
  • Epoxy
  • EPO TEK H70 glue
  • cured at 60C for 15 hours
  • Array Fabrication Note

Rossi, C., et al., Design, fabrication and
modeling of solid propellant microrocket-applicati
on to micropropulsion, Sensors and Actuators A,
vol. 99, (2002) pgs. 125-133
18
Material Considerations Propellant Chamber
  • Silicon
  • Amenable to established microfabrication
    techniques
  • High thermal conductivity (124W/mK)
  • Ceramic (Macor)
  • Low thermal conductivity (1.46W/mK)
  • Adaptable to microfabrication

19
Material Considerations Propellant
  • Heterogeneous solid propellant
  • Polymeric binder (PB), metal catalyst (Al, Mg),
    oxidizer (NH4ClO4)
  • Relatively high energy density
  • Stable and viscous
  • Adaptable properties

20
Modeling Geometric Parameters Chamber-to-Throat
Area Ratio
  • Determines pressure in propellant chamber and
    flow speed at throat
  • Maximize thrust when flow at throat is sonic
  • Ac/At 16 (chamber diam. 1.0mm)
  • Subsonic under atmospheric, sonic under vacuum
  • Thrust force 1.5 5.0mN
  • Burn time 350ms
  • Ac/At 60 (chamber diam. 0.85mm)
  • Sonic under all conditions
  • Thrust force 4.8 5.8mN
  • Burn time 250ms

Ac
At
21
Modeling Geometric Parameters Divergent
  • Guides expansion of exhaust gas from throat
  • Unnecessary under atmospheric conditions (chamber
    pressure too low)
  • Helpful under vacuum

Underexpanded
Optimal
Overexpanded
22
Conclusions
  • Three microrocket designs
  • Turbine Engine
  • Gaseous Propellant Rocket
  • Solid Propellant Rocket
  • Significant advantages exist for the
    solid-propellant design
  • energy density
  • fabrication techniques
  • lifetime
Write a Comment
User Comments (0)
About PowerShow.com