Rosen 1.6 - PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

Rosen 1.6

Description:

Rosen 1.6. Proving Things About Sets. Approaches to Proofs ... Set Identities (Rosen, p. 89) A = A. A U = A. A U = U. A = . A A = A. A A = A (A) = A ... – PowerPoint PPT presentation

Number of Views:12
Avg rating:3.0/5.0
Slides: 21
Provided by: LarryH71
Category:
Tags: rosen

less

Transcript and Presenter's Notes

Title: Rosen 1.6


1
Proving Things About Sets
  • Rosen 1.6

2
Approaches to Proofs
  • Membership tables (similar to truth tables)
  • Convert to a problem in propositional logic,
    prove, then convert back
  • Use set identities for a tabular proof (similar
    to what we did for the propositional logic
    examples but using set identities)
  • Do a logical (sentence-type) argument (similar to
    what we did for the number theory examples)

3
Prove (A?B) ? (A?B) B
  • A B (A?B) (A?B) (A?B)?(A?B)
  • 1 1 1 0 1
  • 1 0 0 0 0
  • 0 1 0 1 1
  • 0 0 0 0 0

4
Prove (A?B) ? (A?B) B
  • (A?B) ? (A?B)
  • x x?(A?B)?(A?B) Set builder notation
  • x x?(A?B) ? x?(A?B) Def of ?
  • x (x?A ? x?B) ? (x?A ? x?B) Def of ? x2
    and Def of complement
  • x (x?B ? x?A ) ? (x?B ? x?A ) Commutative
    x2
  • x (x?B ? (x?A ? x?A ) Distributive
  • x (x?B ? T Or tautology
  • x (x?B Identity
  • B Set Builder notation

5
Set Identities (Rosen, p. 89)
  • A? Ø A
  • A?U A
  • A?U U
  • A? Ø Ø
  • A?A A
  • A ?A A
  • (A) A
  • Identity Laws
  • Domination Laws
  • Idempotent Laws
  • Complementation Law

6
Set Identities (cont.)
  • A ? B B ? A
  • A ? B B ? A
  • A?(B?C) (A?B)?C
  • A?(B?C) (A?B)?C
  • A?(B?C)(A?B)?(A?C)
  • A?(B?C)(A?B)?(A?C)
  • A ? B A ? B
  • A ? B A ? B
  • Commutative Laws
  • Associative Laws
  • Distributive Laws
  • De Morgans Laws

7
Prove (A?B) ? (A?B) B
  • (A?B) ? (A?B)
  • (B?A) ? (B?A) Commutative Law x2
  • B ? (A ? A) Distributive Law
  • B ? U Definition of U
  • B Identity Law

8
Prove (A?B) ? (A?B) B
  • Proof We must show that (A?B) ? (A?B) ? B and
    that B ? (A?B) ? (A?B) .
  • First we will show that (A?B) ? (A?B) ? B.
  • Let e be an arbitrary element of (A?B) ? (A?B).
    Then either e? (A?B) or e? (A?B). If e? (A?B),
    then e?B and e?A. If e? (A?B), then e?B and e?A.
    In either case e ?B.

9
Prove (A?B) ? (A?B) B
  • Now we will show that B ? (A?B) ? (A?B).
  • Let e be an arbitrary element of B. Then either
    e? A?B or e? A?B. Since e is in one or the
    other, then e ? (A?B) ? (A?B).

10
Prove A?B ? A
  • Proof We must show that any element in A?B is
    also in A. Let e be an element in A?B. Since e
    is in the intersection of A and B, then e must be
    an element of A and e must be an element of B.
    Therefore e is in A.

11
Prove A?A ?
  • A?A
  • (A?A) - (A?A)
  • (A) - (A)
  • Ø
  • Definition of ?
  • Idempotent Laws
  • Definition of -

12
Prove A ? B A?B
  • Proof To show that A ? B A?B we must show that
    A ? B ? A?B and A?B ? A?B.
  • First we will show that A ? B ? A?B. Let e ?A ?
    B. We must show that e is also ? A?B. Since e
    ?A?B, then e ?A?B. So either e?A or e?B. If e?A
    then e?A. If e?B then e?B. In either case e?A?B

13
DeMorgan Proof (cont.)
  • Next we will show that A?B ? A?B. Let e ? A?B.
    Then e ? A or e ? B. Therefore, by definition e
    ?A or e ?B. Therefore e ?(A?B) which implies
    that e ? A?B
  • Since A ? B ? A?B and A?B ? A?B then
  • A ? B A?B.

14
Prove A?(B?C)(A?B)?(A?C)
  • Proof To show that A?(B?C)(A?B)?(A?C) we must
    show that A?(B?C) ? (A?B)?(A?C) and (A?B)?(A?C) ?
    A?(B?C).

15
Distributive Proof (cont.)
  • First we will show that A?(B?C) ? (A?B)?(A?C).
    Let e be an arbitrary element of A?(B?C). Then e
    ? A and e ? (B?C). Since e ? (B?C), then either
    e?B or e?C or e is an element of both. Since e
    is in A and must be in at least one of B or C
    then e is an element of at least one of (A?B) or
    (A?C). Therefore e must be in the union of (A?B)
    and (A?C).

16
Distributive Proof (cont.)
  • Next we will show that (A?B)?(A?C) ? A?(B?C). Let
    x ? (A?B)?(A?C). Then either x?(A?B) or x?(A?C)
    or x is in both. If x is in (A?B), then x?A and
    x?B If x?B, then x?(B?C). Therefore x ? A?(B?C).
    By a similar argument if x?(A?C) then, again, x ?
    A?(B?C).
  • Since A?(B?C) ? (A?B)?(A?C) and (A?B)?(A?C) ?
    A?(B?C), then A?(B?C) (A?B)?(A?C).

17
Prove A?B ? A?B ? A B
  • Proof We must show that when A?B ? A?B is true
    then AB is true. (Proof by contradiction)
    Assume that A?B ? A?B is true but A?B. If A?B
    then this means that either ? x?A but x?B, or ?
    x?B but x?A. If ? x?A but x?B, then x ? A?B but
    x ? A?B so A?B is not a subset of A?B and we have
    a contradiction to our original assumption. By a
    similar argument A?B is not a subset of A?B if ?
    x?B but x?A.
  • Therefore A?B ? A?B ? A B.

18
Prove or Disprove
  • A?BA?C ? BC
  • False! A Ø, Ba, Cb
  • A?BA?C ? BC
  • False! Aa, B Ø, Ca

19
Prove A? (B-A) A?B
  • Proof We must show that A?(B-A) ? A?B and A?B ?
    A? (B-A).
  • First we will show that A?(B-A) ? A?B. Let e ?
    A?(B-A). Then either e?A or e? (B-A). If e?A,
    then e? A?B. Note that e cannot be an element of
    both by the definition of (B-A). If e? (B-A),
    then e?B and e ?A by the definition of (B-A). In
    this case, too, e? A?B. Thus A?(B-A) ? A?B.

20
Prove A? (B-A) A?B (cont.)
  • Next we will show that A?B ? A?(B-A). Let e?
    A?B. Then either e?A or e?B or both. If e?A or
    both, then e? A?(B-A). The other case is e?B,
    e?A. In this case e? (B-A) by the definition of
    (B-A). Again, this means that e? A?(B-A). Thus
    A?B ? A?(B-A).
  • Therefore A?(B-A) A?B.
Write a Comment
User Comments (0)
About PowerShow.com