Title: Benefits, Liabilities, and Examples of Seismic Interferometry
1Benefits, Liabilities, and Examples of Seismic
Interferometry
- Chaiwoot B., W. Cao, S. Dong, Yibo Wang, G.
Schuster, - X. Xiao, Yanwei Xu , Jianhua Yu
2Outline
- Reciprocity Equation Correlation Type
CDP
VSP
SWP
CDP
CDP
CDP
CDP
CDP
VSP
SWP
VSP
VSP
VSP
VSP
VSP
SWP
CDP
CDP
SWP
SWP
SWP
SWP
SWP
VSP
3Reciprocity Correlation Equation 1D Transmission
Data
B
Im(G(AB))
A
Phase of Common Raypath Cancels
x
4Reciprocity Correlation Equation 1D Reflection
Data
A
B
Phase of Common Raypath Cancels
x
5Reciprocity Correlation Equation 1D Reflection
Data
A
B
x
6Reciprocity Correlation Equation 2D Reflection
Data
k
G(Ax)G(xB)
Im(G(AB))
B
Phase of Common Raypath Cancels
7General Reciprocity Correlation Eqn. 2D
Reflection Data (Wapenaar, 2004)
2i Im(G(AB)) dG(Ax)G(xB) -
G(Ax)dG(xB)
k
G(Ax)G(xB)
Im(G(AB)
dn
dn
A
B
B
x
x
Phase of Common Raypath Cancels
8Outline
- Reciprocity Equation Correlation Type
- Interferometric Surface Wave Filter
- Poor Mans Superresolution Migration
9Outline
- Reciprocity Equation Correlation Type
CDP
VSP
SWP
CDP
CDP
CDP
CDP
CDP
VSP
SWP
VSP
VSP
VSP
VSP
VSP
SWP
CDP
CDP
SWP
SWP
SWP
SWP
SWP
VSP
10Reciprocity Correlation Equation
2i Im(G(AB)) dG(Ax)G(xB) -
G(Ax)dG(xB)
k
G(Ax)G(xB)
Im(G(AB)
dn
dn
well
A
B
x
G(Ax)
11Reciprocity Correlation Equation
VSP -gt CDP Transform
2i Im(G(AB)) dG(Ax)G(xB) -
G(Ax)dG(xB)
k
G(Ax)G(xB)
Im(G(AB)
dn
dn
2ik
G(Ax)G(xB)
A
B
x
G(Ax)
12Reciprocity Correlation Equation
VSP -gt CDP Transform
G(Ax)G(xB)
Im(G(AB))
k
well
A
B
x
G(Ax)
13Reciprocity Correlation Equation
VSP -gt CDP Transform
G(Ax)G(xB)
Im(G(AB))
k
well
Transform Multiples into Primaries
14Benefit
Superillumination
G(Ax)G(xB)
Im(G(AB))
k
well
Standard VSP Primary
VSP -gt CDP
15VSP -gt CDP Transform Numerical Tests
- Synthetic VSP Data
- 2D VSP Land Data
- 2D VSP Marine Data
- 3D VSP Marine Data
16VSP Images with Static Errors
Kirchhoff Mig.
Interferometric Mig.
0.5 km 2.5 km
0.5 km 2.5 km
0.5 km 2.5 km
0.5 km 2.5 km
17VSP -gt CDP Transform Numerical Tests
- Synthetic VSP Data
- 2D VSP Land Data
- 2D VSP Marine Data
- 3D VSP Marine Data
18VSP Multiple (12 receivers 13 kft _at_ 30 ft
spacing 500 shots)
5000
Depth (ft)
13000
X (ft)
0
56000
19Surface Seismic
5000
Depth (ft)
13000
X (ft)
0
56000
20VSP Multiple (12 receivers 13 kft _at_ 30 ft
spacing 500 shots)
5000
Depth (ft)
13000
X (ft)
0
56000
21VSP -gt CDP Transform Numerical Tests
- Synthetic VSP Data
- 2D VSP Land Data
- 2D VSP Marine Data
- 3D VSP Marine Data
22Exxon Field VSP Data
23Depth (ft)
30
900
0
Raw Data(CRG15)
G(Ax)
Time (s)
G(Bx)
0.3
24Field RVSP Images with Static Errors
Kirchhoff Mig.
Interferometric Mig.
X (m)
1000
0.0 km .9 km
950
Depth (m)
1950
0.0 km .12 km
0.0 km .12 km
25Primaries and multiples migration
(background is CDP stack)
100
Time (ms)
geophones
1600
26VSP -gt CDP Transform Numerical Tests
- Synthetic VSP Data
- 2D VSP Land Data
- 2D VSP Marine Data
- 3D VSP Marine Data
273D SEG Salt Model Test
28VSP Multiples Migration
Stack of 6 receiver gathers
( Courtesy of P/GSI ¼ million traces, 3 GB
memory, 4 hours on a PC )
29GOM Field 3D VSP Data Application
303D VSP Acquisition
11 km
11 km
4.5 km deep
12 geophones at an interval of 15.25 m.
313D Migration Result
Migration of only one receiver gather
32A 2D Image Slice after Stack
0
Depth (m)
Coherent Noise Mismigrated Primary
6500
Offset (m)
11000
0
33Summary
G(Ax)G(xB)
Im(G(AB)
k
well
Benefits
Liabilities
34Outline
- Reciprocity Equation Correlation Type
CDP
VSP
SWP
CDP
CDP
CDP
CDP
CDP
VSP
SWP
VSP
VSP
VSP
VSP
VSP
SWP
CDP
CDP
SWP
SWP
SWP
SWP
SWP
VSP
35Reciprocity Correlation Equation
CDP -gt CDP Transform
Im(G(AB)
S
x
A
B
36Reciprocity Correlation Equation
CDP -gt CDP Transform
Im(G(AB)
S
x
A
B
37BenefitsDistinguish Mult. From Prim.
38Key Idea Migrate Primaries And Water Multiples
Depth (km)
4
15
0
Distance (km)
39Pick Traveltime of Water Bottom Reflection
0
Depth (km)
4
15
0
Distance (km)
40M(x) d(s,g, )
Mult.
T
sg
0
Depth (km)
4
15
0
Distance (km)
412-D SEG/EAGE Salt Model
0
Depth (km)
4
15
0
Distance (km)
42Kirchhoff Depth Migration (Primary)
0
Depth (km)
4
15
0
Distance (km)
43Kirchhoff Depth Migration (Ghost)
0
Depth (km)
4
15
0
Distance (km)
44Primary Ghost
0
Depth (km)
4
15
0
Distance (km)
45Weighted Ghost Primary
46BenefitsInterpolating Near Offset Missing Data
47Original Data
0
Second (s)
1.0
Offset (m)
1390
0
48Near Offset Missing Data
0
Second (s)
1.0
Offset (m)
1390
0
49Pseudo Primaries
0
Second (s)
1.0
Offset (m)
1390
0
50Interferometric Interpolation Result
0
Pseudo Primaries
Original Data
Second (s)
1.0
Offset (m)
1390
0
51Interferometric Interpolation Result
0
Pseudo Primaries
Original Data
Second (s)
1.0
Offset (m)
1390
0
52Summary
G(Ax)G(xB)
Im(G(AB)
k
well
Benefits
Liabilities
53Outline
- Reciprocity Equation Correlation Type
CDP
VSP
SWP
CDP
CDP
CDP
CDP
CDP
VSP
SWP
VSP
VSP
VSP
VSP
VSP
SWP
CDP
CDP
SWP
SWP
SWP
SWP
SWP
VSP
54Reciprocity Correlation Equation
VSP -gt CDP Transform
VSP -gt SWP Transform
2i Im(G(AB)
A
B
x
G(Ax)
55Reciprocity Correlation Equation
VSP -gt CDP Transform
VSP -gt SWP Transform
2i Im(G(AB)
surface
B
A
x
56Reciprocity Correlation Equation
VSP -gt SWP Transform
VSP -gt CDP Transform
Benefits SuperresolutionStatics
57A Salt Flank Imaging Example
10 shots
Overburden
94 geophones
58Interferometric Imaging
2700
Depth (m)
5500
0
Offset (m)
1700
59Interferometric VSP Flank Imaging
0 700 m
(Hornby et al, 2006, The Leading Edge)
60Interferometric VSP Flank Imaging
(Hornby et al, 2006, The Leading Edge)
0 700 m
61Interferometric VSP Flank Imaging
(Hornby et al, 2006, The Leading Edge)
0 700 m
62Interferometric VSP Flank Imaging
(Hornby et al, 2006, The Leading Edge)
0 700 m
63Reciprocity Correlation Equation
VSPCDP -gt SWP Transform
VSP -gt CDP Transform
64CDP Data
3
0
0
Depth (km)
1.8
X (km)
65CDP Data
Virtual VSP Data
3
0
0
Depth (km)
1.8
X (km)
66CDP Data
CDPVirtual VSP Data
3
0
0
Depth (km)
1.8
X (km)
67CDP Data
CDPVirtual VSP Data
Redatumed CDPVirtual VSP Data
3
0
0
Depth (km)
1.8
X (km)
68Redatumed CDPVirtual VSP Data
3
0
0
Depth (km)
1.8
X (km)
69X (km)
0
3
0
Time (s)
3
CSG 100
70Standard CDP Migration with Wrong Overburden
Velocity
X (km)
0
3
0
Depth (km)
1.8
71Interferometric CDP Migration with Wrong
Overburden Velocity
X (km)
0
3
0
Depth (km)
1.8
72Standard Migration
Interferometric Migration
Standard Migration
Correct Velocity
Incorrect Velocity
X (km)
X (km)
X (km)
3
3
3
0
0
0
0
Depth (km)
1.8
73Summary
G(Ax)G(xB)
Im(G(AB)
k
well
Benefits
Liabilities
74Outline
- Reciprocity Equation Correlation Type
CDP
VSP
SWP
CDP
CDP
CDP
CDP
CDP
VSP
SWP
VSP
VSP
VSP
VSP
VSP
SWP
CDP
CDP
SWP
SWP
SWP
SWP
SWP
VSP
75Outline
- Reciprocity Equation Correlation Type
- Interferometric Surface Wave Filter
- Poor Mans Superresolution Migration
76Prediction of Surface Waves
77The work flow
78Aramco Data
Original data from Saudi Arabia
Remove surface waves only by NLF
79Aramco Data
Remove surface waves Int.NLF
Original data from Saudi Arabia
80(No Transcript)
81(No Transcript)
82China Data
0
Time (s)
2.0
0
3600
Receiver (m)
83Outline
- Reciprocity Equation Correlation Type
- Interferometric Surface Wave Filter
- Poor Mans Superresolution Migration
84Salt Model
0.0
Depth (km)
Model
3.8
X (km)
0 km
16 km
85Common Offset Data
0.0
Time (s)
Data
5.0
X (km)
0 km
16 km
86Kirchhoff Image
0.0
Depth (km)
3.8
X (km)
0 km
16 km
87Interferomteric Image
0.0
Depth (km)
3.8
X (km)
0 km
16 km
88Outline
- Reciprocity Equation Correlation Type
- Interferometric Surface Wave Filter
- Poor Mans Superresolution Migration
89Outline
CDP
VSP
SWP
CDP
CDP
CDP
CDP
CDP
VSP
SWP
VSP
VSP
VSP
VSP
VSP
SWP
CDP
CDP
SWP
SWP
SWP
SWP
SWP
VSP
90Reciprocity Correlation Equation
VSPCDP -gt VSP Transform
Im(G(AB)
S
x
A
B
91Reciprocity Correlation Equation VSPCDP -gt VSP
Phase of Common Raypath Cancels
92(No Transcript)
93Outline
- Reciprocity Equation Correlation Type
- Interferometric Surface Wave Filter
- Poor Mans Superresolution Migration
94CDP Redatuming Interferometry
95Field Data stack
Offset (km)
0
12
0.5
990 shots
180 geophones
Interval 25 m
Two-way Time (s)
trace length 8.188 s
sample interval 4 ms
4.0
Stack section (courtesy of Jianming Sheng)
96Field Data
12
Offset (km)
0
0
One-way Time (s)
1.5
Time Migration with NMO Velocity
97Natural Redatumed Field Data
12
Offset (km)
0
0
One-way Time (s)
1.5
Time Migration with NMO Velocity
98Standard Time Migration
Offset (km)
8
11
1.0
Two-way Time (s)
1.6
99Interferometric Migration
Offset (km)
8
11
1.0
Two-way Time (s)
1.6
100Reduced Time Migration
Offset (km)
8
11
1.0
Two-way Time (s)
1.6
101Outline
- Reciprocity Equation Correlation Type
- Interferometric Surface Wave Filter
- Poor Mans Superresolution Migration
102Outline
- Overview
- Surface Multiple Migration
- Interbed Multiple Migration
- Multiple Attenuation in
- Multiple Imaging
- Conclusions
103Outline
- Overview
- Multiple Attenuation in
- Multiple Imaging
- Motivation
- Methodology
- Numerical Examples
- Summary
104A major problem with multiple imaging
high-order multiple
Incorrectly positioned as low-order multiple
105Outline
- Overview
- Multiple Attenuation in
- Multiple Imaging
- Motivation
- Methodology
- Numerical Examples
- Summary
106Step1 Prediction
second-order multiple
107Physics Behind Prediction
D(g s) ? G(g g) D(g s) dg
D(gs) Downgoing component
G(gg) Greens function for
propagating the wavefield
D(gs) Predicted high-order multiples
108Step2 Subtraction
p(t) y(t) - ? fj(t)?mj(t)
Predicted high-order multiple
Original data
High-order multiple-free data
109Generalized-Source Migration
Generalized-source wavefield
Reflection wavefield
110Outline
- Overview
- Multiple Attenuation in
- Multiple Imaging
- Motivation
- Methodology
- Numerical Examples
- Summary
111Numerical Examples
- Synthetic Data Test
- Field Data Test
112Density Model
276 shots, 50m spacing
0
20 receivers 6.25m spacing
Depth (m)
6,000
14,000
0
X (m)
113CRG1 Different Order Multiples
114Before Attenuation
0.4
Time (sec)
2.5
0
14,000
X (m)
115Prediction
0.4
Time (sec)
2.5
0
14,000
X (m)
116After Attenuation
0.4
Time (sec)
2.5
0
14,000
X (m)
117Before Attenuation
0.4
Time (sec)
2.5
0
14,000
X (m)
118Migration Image Before Attenuation
500
Interference from high-order multiple
Depth (m)
6000
12500
1500
X (m)
119Migration Image After Attenuation
500
Depth (m)
6000
12500
1500
X (m)
120Numerical Examples
- Synthetic Data Test
- Field Data Test
121Velocity Model
0
V (ft/s)
4910
Depth (ft)
14300
43000
0
60000
X (ft)
122Different Order Multiples
123Before Attenuation
1.25
1st-order multiple
Time (sec)
2nd-order multiple
5.00
0
60000
X (ft)
124Predicted Multiple
1.25
Time (sec)
5.00
0
60000
X (ft)
125After Attenuation
1.25
Time (sec)
5.00
0
60000
X (ft)
126Before Attenuation
1.25
1st-order multiple
Time (sec)
2nd-order multiple
5.00
0
60000
X (ft)
127Multiple Migration Image Before Attenuation
10
interference from high-order multiple
Depth (kft)
26
X (kft)
16
32
128Multiple Migration Image After Attenuation
10
Depth (kft)
26
X (kft)
16
32
129Multiple Migration Images Comparison
10
Depth (kft)
26
X (kft)
16
32
130Overview
- CDP Interferometric Interpolation
- Interferometric Surface Wave Filter
- Migration Deconvolution New Pemex
- Poor Mans Superresolution Migration
131(No Transcript)
132Standard Migration
Migration Deconvolution
vs
0 3.5 s
(courtesy of PEMEX)
133PEMEX Prestack Migration Image
The CSG d
0.5 s
Time (s)
Time (s)
1.7 s
Receiver (m)
X (km)
0
3600
0 km
5 km
The original data from Saudi
Remove surface waves only by NLF
134PEMEX Prestack Migration Image
The CSG d
0.5 s
Time (s)
Time (s)
1.7 s
Receiver (m)
X (km)
0
3600
0 km
5 km
The original data from Saudi
Remove surface waves only by NLF
135MD Goal
136Overview
- CDP Interferometric Interpolation
- Interferometric Surface Wave Filter
- Migration Deconvolution New Pemex
- Poor Mans Superresolution Migration
137Overview
- CDP Interferometric Interpolation
- Interferometric Surface Wave Filter
- Migration Deconvolution New Pemex
- Poor Mans Superresolution Migration
138Reverse Time Migration
- Fast 3D Reverse Time Datum (Dong)
- Reverse Time Migration POIC (Cao)
- Interferometric Redatuming Saudi
139Overview
- CDP Interferometric Interpolation
- Interferometric Surface Wave Filter
- Migration Deconvolution New Pemex
- Poor Mans Superresolution Migration
14001. Field data
02. Pick first break
03. Refraction traveltime tomography
reference
04. Pick reference layer in tomogram
05. Calculate reference reflection time
10. Reduced time migration
14101. Field data
Wavelet Deconvolution
02. Pick first break
03. Refraction traveltime tomography
Elevation statics correction
Velocity analysis
reference
04. Pick reference layer in tomogram
First stack
05. Calculate reference reflection time
Residual statics correction
Velocity analysis
NMO velocity
10. Reduced time migration
Brute stack
14201. Field data
Wavelet Deconvolution
02. Pick first break
06. Pick reference reflection time in seismogram
03. Refraction traveltime tomography
Elevation statics correction
07. Estimate one-way time to reference layer
Velocity analysis
reference
04. Pick reference layer in tomogram
08. Datum receivers to reference layer
First stack
05. Calculate reference reflection time
Residual statics correction
09. Datum sources to reference layer
Velocity analysis
NMO velocity
10. Reduced time migration
11. Interferometric migration
Brute stack
143Geometry
Elevation
Plan view
18
180
Elev (m)
X (m)
0
0
0
5
0
Y (km)
Y (km)
5
144Stacked section before statics correction
0
Time (s)
2
Stacked section after statics correction
0
Time (s)
2
0
1100
CDP number (5m)
145Vel (m/s)
NMO velocity after statics correction
0
4000
Time (s)
2
1600
Vel (m/s)
Traveltime tomogram
0
6000
Depth (m)
800
0
0
CDP number (5m)
1100
146Imaging Multiples
1. Turn Primaries into Multiples, then Subtract
2. Turn Multiples into Primaries, then Migrate
147Imaging Multiples
1. Turn Multiples into Primaries, then Migrate
2. Turn Multiples into Primaries, then Migrate
148Why Image Multiples in VSP Data?
149Why Image Multiples in VSP Data?
150PEMEX Prestack Migration Image
The CSG d
0.5 s
Time (s)
Time (s)
1.7 s
Receiver (m)
X (km)
0
3600
0 km
5 km
The original data from Saudi
Remove surface waves only by NLF
151Why Image Multiples in VSP Data?
152VSP Multiple (12 receivers 13 kft _at_ 30 ft
spacing 500 shots)
5000
Depth (ft)
13000
X (ft)
0
56000
153CDP Surface Seismic
5000
Depth (ft)
13000
X (ft)
0
56000
154VSP Multiple (12 receivers 13 kft _at_ 30 ft
spacing 500 shots)
5000
Depth (ft)
13000
X (ft)
0
56000
155A Real Walkaway VSP Experiment
0
401 shots on a topographic surface
well
Depth (m)
1400
12 geophones at 1400 - 1500 m depth
1500
0
10000
Offset (m)
156A Common Receiver Gather
0.4
Time (s)
1.8
0
10000
Offset (m)
157Work flow
Separate up and down going wavefields
Upgoing wavefield
Downgoing wavefield
Statics
Statics
Statics
Ray tracing
Pick first-break
Specular interferometry
Primaries migration
Multiples migration
158Standard vs Interferometry Mig VSP (Narrow vs
Wide Illumination)
100
Time (ms)
geophones
1600
159Why Image Multiples in CDP Data?
160Imaging Multiples
1. Turn Multiples into Primaries, then Migrate
161CDP Multiples Migration
162Primary vs Multiple MigrationSynthetic Shot
Gather
Primaries migration in one CSG
Multiples migration in one CSG
163Primary vs Multiple MigrationUnocal Shot Gather
Primaries migration in one CSG
Multiples migration in one CSG
164Overview
165Traveltime Tomography vs Waveform Inversion of
Early Arrivals
Early Arrival Waveform Tomography -gt
SharpSmoothDeeper V(x,z)
166Early Arrival Waveform Tomography Strategy
1. Window about early arrivals Avoid Local
Minima problems
167Synthetic Model
168Traveltime Tomogram
169Velocity Model
170Saudi Land Survey
1. 1279 CSGs, 240 traces/gather
2. 30 m station interval, max. offset 3.6km
3. Line Length 46 km
4. Pick 246,000 traveltimes
5. Traveltime tomography -gt V(x,y,z)
171Brute Stack Section
0
Time (s)
2.0
3920
5070
CDP
172TomostaticsStacking
0
Time (s)
2.0
3920
5070
CDP
173EWTStacking
0
Time (s)
2.0
3920
5070
CDP
174Conclusion
175Overview
176SummaryInterferometric CDP Datuming
177Overview
178Prestack Time Migration Deconvolution for
VSPMarine CDP Data
179(No Transcript)
180Recording Geometry
181 MIG
MD
Depth Slices
Z1 km
Z3 km
Z5 km
182 MIG
MD
Depth Slices
Z7 km
Z9 km
Z10 km
183Meandering Stream Model
2.5 km
2.5 km
0
0
184Mig
Z3.5 KM
Model
MD
185VSP Geometry source 21 x 21 geophone 12
Migration
MD
Depth1.75 km
1863-D SEG/EAGE Salt Model
12.2 km
12.2 km
0
0
Imaging dxdy20 m
1873-D SEG/EAGE Salt Model
Y7.12 km
X (km)
Y (km)
188Mig (z1.2 km)
X (km)
X (km)
5
9.8
5
9.8
3
Y (km)
10
189MD
X (km)
0
6
0
PSTMD
PSTM(courtesy of Unocal)
Time (s)
8
190MD
X (km)
0
6
3
Time (s)
8
191MD
Mig (courtesy of Aramco)
Time (s)
192Mig (courtesy of Unocal)
MD
Inline Number
1
90
90
Inline Number
1
1.1
Depth (kft)
7.0
(Crossline50)
193(No Transcript)
194MD
Mig
(3.6 kft)
195Standard Migration
Migration Deconvolution
vs
0 3.5 s
(courtesy of PEMEX)
196Conclusions
MD reduces migration artifacts
197Overview
198Why RTD?
SMAART JV. Pluto 1.5 Vp model
0
Depth (Km)
9
0
30
Distance (km)
199Why RTD?
POIC image
KM image
6
Depth (km)
9
5
25
5
25
Distance (km)
Distance (km)
200Why RTD?
Offset (km)
Complex Rough topography Large velocity variation
RTD
Depth (Km)
Less Complex
201Implement RTD
S
r
Depth
d(xx)g(sx) d(sx)
x
x
Distance
202Implement RTD
d(sr)
S
R
g(sx)
Depth
x
x
Target-oriented RTD (LuoSchuster , 2002)
Distance
203Outline
- RTDPOIC
- SMAART Data
- Conclusions
204Why RTD
SMAART JV. Pluto 1.5 Vp model
0
Depth (Km)
9
0
30
Distance (km)
205SMAART JV Data
206KM Depth Images
After Datuming
Before Datuming
6
Depth (km)
9
5
25
5
25
Distance (km)
Distance (km)
207POIC Depth Images
After Datuming
Before Datuming
6
Depth (km)
9
5
25
5
25
Distance (km)
Distance (km)
208Depth Images after Redatuming
Reflectivity Model
KM image
6
Depth (km)
9
5
25
5
25
Distance (km)
Distance (km)
209Depth Images after Redatuming
POIC image
KM image
Depth (km)
Distance (km)
Distance (km)
210Outline
- RTDPOIC
- SMAART Data
- Conclusions
211Conclusions (RTDPOIC)
- RTD helps reveal deeper structure
- RTD KM provides good depth image
- RTD POIC helps to suppress multiples
and preserve the primaries
212Overview
213CDP Transfer Function Deconvolution
D(sx) T(sx)
T(xg)
overburden
214CDP Transfer Function Deconvolution
0 0.6
0 600
Depth (m)
Time (s)
0 0.6
0 0.6
Time (s)
Time (s)
0 600 m
0 600 m
X (m)
X (m)
215CDP Transfer Function Deconvolution
0 0.6
0 600
Reflections
Depth (m)
Time (s)
0 0.6
0 0.6
Time (s)
Time (s)
0 600 m
0 600 m
X (m)
X (m)
216CDP Transfer Function Deconvolution
0 0.6
0 600
Reflections
Depth (m)
Time (s)
0 0.6
0 0.6
Scattering
Time (s)
Time (s)
0 600 m
0 600 m
X (m)
X (m)
217CDP Transfer Function Deconvolution
0 0.6
0 600
Reflections
Depth (m)
Time (s)
0 0.6
0 0.6
Scattering
ScatteringReflections
Time (s)
Time (s)
0 600 m
0 600 m
X (m)
X (m)
218CDP Transfer Function Deconvolution
Mig. Of Data w/o Scattering
Mig.Decon of Data with Scatter
0 X (m) 600 m
0 X (m) 600 m
219FD Experiment
1500
0
Generalized-source wavefield
Dpeth (m)
Time (s)
Reflection wavefield
3500
3
Offset (m)
1000
Depth (m)
3500
0
1500
220GSM Results
GSM of one shot gather
GSM of three shot gathers
1500
Dpeth (m)
3500
Offset (m)
1000
Offset (m)
1000
0
0
221Reduced Form GSM
Ray tracing of line source (picked direct
wave)
Reduce form GSM result
1500
Dpeth (m)
3500
Offset (m)
0
1000
Offset (m)
0
1000
222Conclusion
223Overview
- Transfer Function Deconvolution
- CDP Specular Interferomtery
- VSP Specular Interferometry
- Refraction Interferometry
224Conclusion
225(No Transcript)
226Reciprocity Correlation Equation Lucky 2D
Reflection Data
k
G(Ax)G(xB)
Im(G(AB)
B
Phase of Common Raypath Cancels