Title: ATF2 LayoutLattice Options
1ATF2 Layout/Lattice Options
Coupling Correction / Emittance Diagnostics
FONT
nBPM (SLAC)
nBPM (KEK)
Compton / laserwire
Existing ATF Extraction Line
ODR
2Optimal Layout (from ATF2 Proposal vol. 1)
8 m wall to IP
3Assembly Hall
chicane
8.3 m wall to dump face (14.3 m wall to IP)
4ßx,y 4,0.1 mm
30 cm offset
5new quadrupole QMX (between QF3X and BH1X.3)
6EXT Skew Correction Emittance Diagnostic
Section (optimal2)
SQ
SQ
SQ
SQ
WS
WS
WS
WS
WS
1.0
1.0
1.0
1.0
1.7
0.7
0.7
0.7
0.7
1.0
3.0
3.0
3.0
x y
90 90
180 90
90 90
55 25
41 31
31 41
26 26
34.1 8.6
136.3 6.2
80.4 10.5
136.3 6.2
80.4 10.5
s (µm)
4 lt sx/sy lt 22
7TABLE 1 existing ATF EXT quadrupoles ------------
--------------------------------------------------
---------------- power supply maximum currents
from N. Terunuma email (April 22,
2005) --------------------------------------------
---------------------------------- a note on
names the "quad name" column names the location
in the beam line the "magnet name" column names
the physical magnet that presently resides
at each location the "power supply" column names
the power supply whose cables come to that
location -----------------------------------------
------------------------------------- quad
magnet magnet power Imax KLmax
notes name name type supply p.s.
_at_ 1.3 GeV ----- ------- ----------- ------
---- --------- ------------------------ QD1X
QD1Xmag Hitachi 2 QD1Xps 100 0.6657 QD2X
QD2Xmag Hitachi 2 QD2Xps 100 0.6657 QF1X
QF1Xmag Hitachi 2 QF1Xps 100 0.6657 QK0X
QK0Xmag ECUBE skew QK0Xps 20
2.7673e-4 QS1X QS1Xmag ECUBE skew QS1Xps
20 2.7673e-4 QF2X QF2Xmag Hitachi 1 QF2Xps
100 0.2989 QD3X QD3Xmag Hitachi 5 QD3Xps
100 2.1050 QF3X QF3Xmag Hitachi 5 QF3Xps
100 2.1050 QF4X QF4Xmag Hitachi 5 QF4Xps
100 2.1050 QS2X QS2Xmag ECUBE skew QS2Xps
20 2.7673e-4 QD4X QD4Xmag Hitachi 5
QD4Xps 200 2.1050 use Imax 100 amps QD5X
QD5Xmag Hitachi 5 QD5Xps 100 2.1050 BH4X
................................................
....................... QF5X QF5Xmag Hitachi 5
QF5Xps 100 2.1050 QK1X QK1Xmag IDX skew
QK1Xps 5 2.5363e-2 QD6X QD6Xmag Tokin
3393 QD6Xps 100 0.3021 QK2X QK2Xmag IDX
skew QK2Xps 5 2.5363e-2 QD7X QD7Xmag
Hitachi 5 QD7Xps 100 2.1050 QK3X QK3Xmag
IDX skew QK3Xps 5 2.5363e-2 QF6X
QF6Xmag Hitachi 5 QF6Xps 100 2.1050 QK4X
QK4Xmag IDX skew QK4Xps 5
2.5363e-2 QD8X QD8Xmag Hitachi 4 QD8Xps
200 2.0650 QF7X QF7Xmag Hitachi 4 QF7Xps
100 1.0488 QD9X QD9Xmag Hitachi 4 ------
--- 2.0650 in series with QD8X
magnetic measurements data file
Imax -------------------------------
----- ATFMAGMAG_KI_Q_HITACHI_1.FOR
140.2 ATFMAGMAG_KI_Q_HITACHI_2.FOR
100.2 ATFMAGMAG_KI_Q_HITACHI_4.FOR
200.4 ATFMAGMAG_KI_Q_HITACHI_5.FOR
100.6 ATFMAGMAG_KI_Q_TOKIN_3393.FOR
139.0 ATFMAGMAG_KI_Q_IDX_SKEW.FOR
20.0 ATFMAGMAG_KI_Q_ECUBE_SKEW 20.0
8TABLE 2 ATF2 EXT quadrupoles ("optimal
2") ----------------------------------------------
-------------------------------- quad magnet
magnet power Imax KLmax KL
NOTEs name name type supply p.s.
(see below) ----- -------
---------- ------ ---- --------- -------
---------------- QD1X QD6Xmag Tokin 3393
QD1Xps 100 0.3021 -0.2500 2 QD2X
QD2Xmag Hitachi 2 QD2Xps 100 0.6657
-0.2529 QF1X QF1Xmag Hitachi 2 QF1Xps 100
0.6657 0.3554 QK0X QK0Xmag ECUBE skew
QK0Xps 20 2.7673e-4 0.0 QS1X QS1Xmag
ECUBE skew QS1Xps 20 2.7673e-4 0.0 QF2X
QF2Xmag Hitachi 1 QF2Xps 100 0.2989
0.2122 QD3X QD3Xmag Hitachi 5 QD3Xps 100
2.1050 -0.5507 QF3X QF3Xmag Hitachi 5
QF3Xps 100 2.1050 0.3238 QMX QF5Xmag
Hitachi 5 QF5Xps 100 2.1050 0.7293
3 QF4X ------- IHEP ------ 100 2.5
2.0628 1,4 QS2X QS2Xmag ECUBE skew
QS2Xps 20 2.7673e-4 0.0 QD4X QD4Xmag
Hitachi 5 QF7Xps 100 2.1050 -1.3399
5 QF5X QD5Xmag Hitachi 5 QD5Xps 100
2.1050 0.6193 BH4X ........................
............................................... QD
5X QD1Xmag Hitachi 2 QD6Xps 100 0.6657
-0.3528 2 QK1X QK1Xmag IDX skew QK1Xps
5 2.5363e-2 0.0 QD6X QD7Xmag Hitachi 5
QD7Xps 100 2.1050 -1.2504 QF6X QF6Xmag
Hitachi 5 QF6Xps 100 2.1050 1.2504 QK2X
QK2Xmag IDX skew QK2Xps 5 2.5363e-2
0.0 QD7X QF4Xmag Hitachi 5 QF4Xps 100
2.1050 -1.2504 QF7X QD8Xmag Hitachi 4
QD8Xps 200 2.0650 1.6706 6 QD8X
QF7Xmag Hitachi 4 QD4Xps 200 2.0650
-1.2478 5 QF8X QD9Xmag Hitachi 4 ------
200 2.0650 1.6706 6 QK3X QK3Xmag IDX
skew QK3Xps 5 2.5363e-2 0.0 QD9X
------- IHEP ------ 100 2.5
-1.2504 1 QF9X ------- IHEP ------
100 2.5 1.2504 1 QK4X QK4Xmag IDX
skew QK4Xps 5 2.5363e-2 0.0 QD10X
------- IHEP ------ 100 2.5
-0.8436 1 QF10X ------- IHEP ------
100 2.5 0.8106 1 QD11X ------- IHEP
------ 100 2.5 -0.3753 1 QF11X
------- IHEP ------ 100 2.5
0.3753 1 QD12X ------- IHEP ------
100 2.5 -0.3753 1
note IHEP quadrupole may need gt 100 amps to
reach KL 2.5
9NOTEs a) the names in the "quad name" column
of TABLE 2 should be considered arbitrary in
some cases existing EXT quads were not moved or
reconnected but were renamed b) quad center
locations upstream of BH4X are unchanged (except
for new quad QMX) the quad support stands
are also unchanged since only quads with
identical core lengths (but different number of
coil turns) have been "swapped" all quads
downstream of BH4X have been moved c) the
Hitachi Type 2 and Tokin 3393 quads are 6 cm core
magnets ... all other quads (except for
skews) are 18 cm core magnets the Hitachi quads
have a KLmax of 0.6657 at 100 amps, while the
Tokin quad has less than half the strength
(0.3021) at 100 amps d) all but two of the quad
power supplies (neglecting skews) are 100 amps
there are two 200 amp power supplies 1) new
magnet (IHEP) ... I am assuming KLmax 2.5 _at_ 100
amps 2) the quad named QD5X in the ATF2
"optimal 2" optics is a 6 cm magnet that
requires KL -0.3528 ... since this exceeds
KLmax for a Tokin 3393 (assuming a 100 amp
power supply), the Hitachi Type 2 quad QD1Xmag
was moved to this location, with QD6Xmag
moved to become QD1X since the QD6Xps and
QD1Xps power supplies are identical, they weren't
swapped if we assume that we can get a 140
amp power supply for QD5X, then no swap is
needed and we can use QD6Xmag at this location
3) a Hitachi Type 5 magnet is used at the (new)
QMX location because it's required strength
is greater than KLmax for the other available
types QF5Xmag magnet and QF5Xps power supply
cables are moved to this location 4) a new
(IHEP) quad is used at the QF4X location because
the required strength would be 98 of a
Hitachi Type 5 magnet with a 100 amp power
supply ... it's lt 83 of an IHEP quad 5) the
QF7Xps power supply is used for QD4X because only
100 amps are needed the 200 amp power supply
(QD4Xps) is needed for QD8X because it's
required strength is greater than KLmax for a
Hitachi Type 4 magnet with a 100 amp power
supply 6) QF7X and QF8X are powered in series
with power supply QD8Xps
10EXT Modifications for ATF2 (Optimal 2)
Existing EXT Quadrupole Power Supplies
Existing EXT Magnets
11Chicane Removal Options
- Optimal 2.1 remove chicane
- rematch to FF using matching quads
- laserwire detectors between FF B5 and QD6
- IP moves 5.1 m east and 0.8 m north
- Optimal 2.2 remove chicane lengthen skew/emit
section - minimize changes to existing EXT magnets and
power supplies (like Optimal) - optimize vertical spot sizes at wire scanners
(big enough for 10 µm tungsten or carbon filament
wires, small enough to generate reasonable gamma
flux from laserwire 5 µm?) - laserwire detectors between FF B5 and QD6
- IP stays at Optimal 2 location
- Optimal 2.3 remove chicane reduce EXT BH2X.1
bend (50) - rematch to skew/emit using EXT quads
- rematch to FF using matching quads
- laserwire detectors between FF B5 and QD6
- IP moves 4.7 m east and 10.2 m north
- Optimal 2.4 remove chicane reduce BH2X.1
lengthen skew/emit section - minimize changes to existing EXT magnets and
power supplies (like Optimal)
12- Optimal 2.1 remove chicane
- rematch to FF using matching quads
- laserwire detectors between FF B5 and QD6
- IP moves 5.1 m east and 0.8 m north
Assembly Hall
13.4 m wall to dump face (19.3 m wall to IP)
13ßx,y 4,0.1 mm
14- Optimal 2.2 remove chicane lengthen skew/emit
section - minimize changes to existing EXT magnets and
power supplies (like Optimal) - optimize vertical spot sizes at wire scanners
(big enough for 10 µm tungsten or carbon filament
wires, small enough to generate reasonable gamma
flux from laserwire 5 µm?) - laserwire detectors between FF B5 and QD6
- IP stays at Optimal 2 location
Assembly Hall
8.3 m wall to dump face (14.3 m wall to IP)
15ßx,y 4,0.1 mm
16EXT Diagnostic Section (optimal 2.2)
SQ
SQ
SQ
SQ
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
1.3
1.3
1.3
1.3
WS
WS
WS
WS
WS
x y
90 90
180 90
90 90
33 57
57 33
33 57
57 33
59.2 8.3
108.0 4.5
59.2 8.3
108.0 4.5
59.2 8.3
s (µm)
7 lt sx/sy lt 24
17- Optimal 2.3 remove chicane reduce EXT BH2X.1
bend (50) - rematch to skew/emit using EXT quads
- rematch to FF using matching quads
- laserwire detectors between FF B5 and QD6
- IP moves 4.7 m east and 10.2 m north
12.8 m wall to dump face (18.8 m wall to IP)
Assembly Hall
18ßx,y 4,0.1 mm
19new quadrupole QMX (between QF3X and BH1X.3)
20- Optimal 2.4 remove chicane reduce BH2X.1
lengthen skew/emit section - minimize changes to existing EXT magnets and
power supplies - optimize vertical spot sizes at wire scanners
(big enough for 10 µm tungsten or carbon filament
wires, small enough to generate reasonable gamma
flux from laserwire 5 µm?) - laserwire detectors between FF B5 and QD6
- IP moves 0.5 m west and 10.2 m north
7.6 m wall to dump face (13.6 m wall to IP)
Assembly Hall
EXT optics for this option is still under
construction more later!
21Continuing Optics Work
- verify that laserwire detector location
downstream of FF B5 is OK decide on removal of
chicane (see Junjis talk on Sunday morning) - select one of the options for further study
reoptimize skew correction and diagnostics
section for best measurement performance with
least change to EXT magnets upstream of BH2X.1
(try to avoid swapping) - should we assume commissioning with conventional
wire scanners (recycle the MWs)? -
- can we can put lt 10 µm diameter carbon wires in
wire scanners for more accurate beam size
measurements? - what is the optimum beam size for measurement
with either laserwire or conventional wire
scanner? 5 µm? - if we choose to reduce bend angle of BH2X.1, need
to make realistic optics perhaps revisit
reduced dispersion EXT optics - possible modifications to ßmatching section
between EXT and FF to accommodate tail-folding
octupoles (see Sergeis talk on Sunday afternoon) - TURTLE tracking need to reoptimize system
bandwidth and performance - revisit simulations of steering and
dispersion/coupling correction with machine and
diagnostics errors