Protein Identification by Sequence Database Search - PowerPoint PPT Presentation

1 / 64
About This Presentation
Title:

Protein Identification by Sequence Database Search

Description:

Alanine. A. 10. Peptide Masses. 1811.90 GLSDGEWQQVLNVWGK. 1606.85 VEADIAGHGQEVLIR ... Alanine. A. 29. De Novo Interpretation ...from Lu and Chen (2003), JCB 10:1. 30 ... – PowerPoint PPT presentation

Number of Views:82
Avg rating:3.0/5.0
Slides: 65
Provided by: cbcb6
Category:

less

Transcript and Presenter's Notes

Title: Protein Identification by Sequence Database Search


1
Protein Identification by Sequence Database Search
  • Nathan Edwards
  • Department of Biochemistry and Mol. Cell.
    Biology
  • Georgetown University Medical Center

2
Peptide Mass Fingerprint
Cut out 2D-GelSpot
3
Peptide Mass Fingerprint
Trypsin Digest
4
Peptide Mass Fingerprint
MS
5
Peptide Mass Fingerprint
6
Peptide Mass Fingerprint
  • Trypsin digestion enzyme
  • Highly specific
  • Cuts after K R except if followed by P
  • Protein sequence from sequence database
  • In silico digest
  • Mass computation
  • For each protein sequence in turn
  • Compare computer generated masses with observed
    spectrum

7
Protein Sequence
  • Myoglobin GLSDGEWQQV LNVWGKVEAD IAGHGQEVLI
    RLFTGHPETL EKFDKFKHLK TEAEMKASED LKKHGTVVLT
    ALGGILKKKG HHEAELKPLA QSHATKHKIP IKYLEFISDA
    IIHVLHSKHP GDFGADAQGA MTKALELFRN DIAAKYKELG FQG

8
Protein Sequence
  • Myoglobin GLSDGEWQQV LNVWGKVEAD IAGHGQEVLI
    RLFTGHPETL EKFDKFKHLK TEAEMKASED LKKHGTVVLT
    ALGGILKKKG HHEAELKPLA QSHATKHKIP IKYLEFISDA
    IIHVLHSKHP GDFGADAQGA MTKALELFRN DIAAKYKELG FQG

9
Amino-Acid Masses
10
Peptide Masses
  • 1811.90 GLSDGEWQQVLNVWGK
  • 1606.85 VEADIAGHGQEVLIR
  • 1271.66 LFTGHPETLEK
  • 1378.83 HGTVVLTALGGILK
  • 1982.05 KGHHEAELKPLAQSHATK
  • 1853.95 GHHEAELKPLAQSHATK
  • 1884.01 YLEFISDAIIHVLHSK
  • 1502.66 HPGDFGADAQGAMTK
  • 748.43 ALELFR

11
Peptide Mass Fingerprint
YLEFISDAIIHVLHSK
GHHEAELKPLAQSHATK
GLSDGEWQQVLNVWGK
HPGDFGADAQGAMTK
VEADIAGHGQEVLIR
HGTVVLTALGGILK
KGHHEAELKPLAQSHATK
ALELFR
LFTGHPETLEK
12
Sample Preparation for Tandem Mass Spectrometry
13
Single Stage MS
MS
14
Tandem Mass Spectrometry(MS/MS)
MS/MS
15
Peptide Fragmentation
Peptides consist of amino-acids arranged in a
linear backbone.
N-terminus
H-HN-CH-CO-NH-CH-CO-NH-CH-CO-OH
Ri-1
Ri
Ri1
C-terminus
AA residuei-1
AA residuei
AA residuei1
16
Peptide Fragmentation
17
Peptide Fragmentation
yn-i-1
-HN-CH-CO-NH-CH-CO-NH-
Ri1
Ri
bi1
18
Peptide Fragmentation
19
Peptide Fragmentation
Peptide S-G-F-L-E-E-D-E-L-K
20
Peptide Fragmentation
21
Peptide Fragmentation
22
Peptide Fragmentation
23
Peptide Identification
  • Given
  • The mass of the precursor ion, and
  • The MS/MS spectrum
  • Output
  • The amino-acid sequence of the peptide

24
Peptide Identification
  • Two paradigms
  • De novo interpretation
  • Sequence database search

25
De Novo Interpretation
26
De Novo Interpretation
27
De Novo Interpretation
28
De Novo Interpretation
29
De Novo Interpretation
from Lu and Chen (2003), JCB 101
30
De Novo Interpretation
31
De Novo Interpretation
from Lu and Chen (2003), JCB 101
32
De Novo Interpretation
  • Find good paths in spectrum graph
  • Cant use same peak twice
  • Forbidden pairs NP-hard
  • Nested forbidden pairs Dynamic Prog.
  • Simple peptide fragmentation model
  • Usually many apparently good solutions
  • Needs better fragmentation model
  • Needs better path scoring

33
De Novo Interpretation
  • Amino-acids have duplicate masses!
  • Incomplete ladders create ambiguity.
  • Noise peaks and unmodeled fragments create
    ambiguity
  • Best de novo interpretation may have no
    biological relevance
  • Current algorithms cannot model many aspects of
    peptide fragmentation
  • Identifies relatively few peptides in
    high-throughput workflows

34
Sequence Database Search
  • Compares peptides from a protein sequence
    database with spectra
  • Filter peptide candidates by
  • Precursor mass
  • Digest motif
  • Score each peptide against spectrum
  • Generate all possible peptide fragments
  • Match putative fragments with peaks
  • Score and rank

35
Sequence Database Search
36
Sequence Database Search
37
Sequence Database Search
38
Sequence Database Search
  • No need for complete ladders
  • Possible to model all known peptide fragments
  • Sequence permutations eliminated
  • All candidates have some biological relevance
  • Practical for high-throughput peptide
    identification
  • Correct peptide might be missing from database!

39
Peptide Candidate Filtering
  • Digestion Enzyme Trypsin
  • Cuts just after K or R unless followed by a P.
  • Basic residues (K R) at C-terminal attract
    ionizing charge, leading to strong y-ions
  • Average peptide length about 10-15 amino-acids
  • Must allow for missed cleavage sites

40
Peptide Candidate Filtering
  • gtALBU_HUMAN MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDL
    GEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK

No missed cleavage sites
MK WVTFISLLFLFSSAYSR GVFR R DAHK SEVAHR FK DLGEENF
K ALVLIAFAQYLQQCPFEDHVK LVNEVTEFAK
41
Peptide Candidate Filtering
  • gtALBU_HUMAN MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDL
    GEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK

One missed cleavage site
MKWVTFISLLFLFSSAYSR WVTFISLLFLFSSAYSRGVFR GVFRR RD
AHK DAHKSEVAHR SEVAHRFK FKDLGEENFK DLGEENFKALVLIAF
AQYLQQCPFEDHVK ALVLIAFAQYLQQCPFEDHVKLVNEVTEFAK
42
Peptide Candidate Filtering
  • Peptide molecular weight
  • Only have m/z value
  • Need to determine charge state
  • Ion selection tolerance
  • Mass for each amino-acid symbol?
  • Monoisotopic vs. Average
  • Default residual mass
  • Depends on sample preparation protocol
  • Cysteine almost always modified

43
Peptide Molecular Weight
44
Peptide Molecular Weight
45
Peptide Molecular Weight
from Isotopes An IonSource.Com Tutorial
46
Peptide Molecular Weight
  • Peptide sequence WVTFISLLFLFSSAYSR
  • Potential phosphorylation? S,T,Y 80 Da
  • 7 Molecular Weights
  • 64 Peptides

47
Peptide Scoring
  • Peptide fragments vary based on
  • The instrument
  • The peptides amino-acid sequence
  • The peptides charge state
  • Etc
  • Search engines model peptide fragmentation to
    various degrees.
  • Speed vs. sensitivity tradeoff
  • y-ions b-ions occur most frequently

48
Mascot Search Engine
49
Mascot Peptide Mass Fingerprint
50
Mascot MS/MS Ions Search
51
Mascot Sequence Query
52
Mascot MS/MS Search Results
53
Mascot MS/MS Search Results
54
Mascot MS/MS Search Results
55
Mascot MS/MS Search Results
56
Mascot MS/MS Search Results
57
Mascot MS/MS Search Results
58
Mascot MS/MS Search Results
59
Sequence Database SearchTraps and Pitfalls
  • Search options may eliminate the correct peptide
  • Precursor mass tolerance too small
  • Fragment m/z tolerance too small
  • Incorrect precursor ion charge state
  • Non-tryptic or semi-tryptic peptide
  • Incorrect or unexpected modification
  • Sequence database too conservative
  • Unreliable taxonomy annotation

60
Sequence Database SearchTraps and Pitfalls
  • Search options can cause infinite search times
  • Variable modifications increase search times
    exponentially
  • Non-tryptic search increases search time by two
    orders of magnitude
  • Large sequence databases contain many irrelevant
    peptide candidates

61
Sequence Database SearchTraps and Pitfalls
  • Best available peptide isnt necessarily correct!
  • Score statistics (e-values) are essential!
  • What is the chance a peptide could score this
    well by chance alone?
  • The wrong peptide can look correct if the right
    peptide is missing!
  • Need scores (or e-values) that are invariant to
    spectrum quality and peptide properties

62
Sequence Database SearchTraps and Pitfalls
  • Search engines often make incorrect assumptions
    about sample prep
  • Proteins with lots of identified peptides are not
    more likely to be present
  • Peptide identifications do not represent
    independent observations
  • All proteins are not equally interesting to report

63
Sequence Database SearchTraps and Pitfalls
  • Good spectral processing can make a big
    difference
  • Poorly calibrated spectra require large m/z
    tolerances
  • Poorly baselined spectra make small peaks hard to
    believe
  • Poorly de-isotoped spectra have extra peaks and
    misleading charge state assignments

64
Summary
  • Protein identification from tandem mass spectra
    is a key proteomics technology.
  • Protein identifications should be treated with
    healthy skepticism.
  • Look at all the evidence!
  • Spectra remain unidentified for a variety of
    reasons.
  • Lots of open algorithmic problems!
Write a Comment
User Comments (0)
About PowerShow.com