Title: Controlled Polymerisation
1Controlled Polymerisation
- D M Haddleton
- CH404
- Synthetic Chemistry III
2Polymers in everday use
- Mechanical properties
- New applications
- Personal care products
- Pharmaceutical Applications
- BASF, Unilever, Geltex, Avecia, etc
3Control over Polymer architecture
- Graft Copolymers
- Star copolymers
- Dendrimers
- Non covalent crosslinking
- Branching
- Narrow MWD
- Blocks
4Control
5Living Polymerisation
- Rate of termination ? 0
- Rate of Initiation gt Rate of Propagation
- Then
- PDi (Mw/Mn) 1 1/DP
6Test for Living Polymerisation
7Living Polymerisation
- Anionic
- Cationic
- Ring Opening
8(No Transcript)
9(No Transcript)
10(No Transcript)
11(No Transcript)
12Commercial impact of living/controlled
polymerisation
- Anionic Polymerisation is the most established
form of living polymerisation - Although discovered in 1956 commercial
applications have probably not lived up to
expectations - Notable exception is styrene-diene block/star
copolymers (Kraton rubbers) - Generally anionic polymerisation requires low
temperatures, solvents which do not chain
transfer and extremely pure solvents and reagents.
13Group Transfer Polymerisation
14(No Transcript)
15(No Transcript)
16Free Radical Polymerisation
17Nitroxide Mediated Radical Polymerisation
18Reversible Homolytic Dissociation
- Covalent adduct
- Persistent radical
19Acc. Chem. Res., 30 (9), 373 -382, 1997
20Variation in experimentally determined molecular
weight, Mn, and the theoretical molecular
weights for thepolymerization of styrene at 125 C
using varying amounts of the unimolecular
initiator 9.
21CRP of Styrene in Bulk
22Library of alkoxyamine structures evaluated as
initiators for the living free radical
polymerization of styrene and n-butyl acrylate.
23TEMPO
24Living Polymerisation of Dienes
25(No Transcript)
26Reversible Addition Fragmentation Polymerisation
27RAFT Polymerisation
28Macromolecules, ASAP Article 10.1021/ma991451a
S0024-9297(99)01451-5 Web Release Date January
6, 2000
29GPC traces of (a) PMA prepared using 5 and (b)
the same PMA treated with ethylenediamine in THF
at room temperature
30Generalized Addition-Fragmentation
31Addition - Fragmentation
32Atom TransferPolymerisation
33(No Transcript)
34(No Transcript)
35K. Matyjaszewski Macromolecules 1997, 30, p7697
7042 7034 7348 8161 7692 6507, 6513, 6398
JACS 1997, 119, p674 V Percec Macromolecules
1997, 30, p6705, 8526 M Sawamoto Macromolecules
1997, 30, p2244, 2249 Teyssie Macromolecules
1997, 30, p7631, Haddleton Macromolecules 1997,
30, p2190
36Macromolecules, 30 (25), 7697 -7700, 1997.
37Macromolecules, 31 (4), 1064 -1069, 1998
38(No Transcript)
39Macromolecules, 31 (20), 6762 -6768, 1998
Jiro Ueda, Masami Kamigaito, and Mitsuo Sawamoto
40Macromolecules, 31 (20), 6756 -6761, 1998
Hiroko Uegaki, Yuzo Kotani, Masami Kamigaito,
and Mitsuo Sawamoto
41Macromolecules, 32 (7), 2204 -2209, 1999
42(No Transcript)
43Reaction rate dependence on the Cu(I)
44Too much catalyst leads to problems of cost
and residual metal in products. Rate can be
accelerated Reduction of copper(II) to
copper(I) e.g. disproportionation with
copper(0) - Matyjaszewski Addition of rate
enhancers e.g. acid, alcohols Use of mildly
co-ordinated solvents However, for many
applications we require Much lower levels of
metal Recycling of metal Acceptable rates of
polymerisation
45(No Transcript)
46Synthesis of Initiators from alcohols
47?- Functional polymers from functional initiators
based on phenols
48Catalytic Chain Transferfor Molecular Weight
Control inFree-Radical Polymerisation
49Measurement of Chain Transfer Constants
50Polymerisation of MMA at 60 C with COBF
51Types of Catalysts
52Mechanism of CCTP
53CCT Agents
54Acrylate Monomers
55Comparison of Catalysts
56Generalized Addition-Fragmentation
57Addition - Fragmentation
58(No Transcript)
59Further reaction of CCTP macromonomer products
60(No Transcript)