Decision Support with Imprecise Data for Consumers - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

Decision Support with Imprecise Data for Consumers

Description:

cation. Evaluation. sophisticated. information. personalised ... cation. Price comparison. of Web shops. Evaluating information system. Alternative database ... – PowerPoint PPT presentation

Number of Views:32
Avg rating:3.0/5.0
Slides: 17
Provided by: infcU
Category:

less

Transcript and Presenter's Notes

Title: Decision Support with Imprecise Data for Consumers


1
Decision Support with Imprecise Data for Consumers
  • Gergely Lukacs
  • lukacs_at_ipd.uni-karlsruhe.de
  • Institute for Program Structures and Data
    Organisation
  • Universtität Karlsruhe

2
Product Evaluations As of Today
Product labels (Energy Star)
Product evaluations (Which Magazine)
Web-metashopprice comparison
unbiased


--
professional
--


Usercommuni-cation
easy access
-
--

personalised
--
--

sophisticatedinformation
--


3
Evaluating Information Systems
4
Energy Saving Climate Change Mitigation
  • Source
  • Intergovernmental Panel on Climate Change
    Climate Change 2001 Mitigation
  • Negative costs!

5
Imprecise Data inEvaluating Information Systems
Usage pattern
professional
Predictions (energy costs)
Product descriptions
Evaluating information system
Alternative database
Web-shop
electronic product label
classified advertisements
public transport timetable
6
Background Imprecise Data
retail price energy consumption
  • Precise value
  • Imprecise value
  • unknown (partial information ignored)
  • possible values
  • probability distribution
  • imprecise probabilities
  • probability- necessity measures, etc.

EUR
0
1000
NULL
EUR
0
1000
EUR
0
1000
Pr
EUR
0
1000
PrL
PrU
1000
0.1
0.6
900
0.7
900, 1000
0.8
1200
0.8
7
Background Decisions under Imprecise Data
Pr
Pr
?
EUR
EUR
0
1000
0
1000
  • Decision theory (economic science)
  • Expected value
  • Alt1 gt Alt2 ? E(?1) lt E(?2)
  • Bernoulli-principle
  • Alt1 gt Alt2 ? Ec(?1) lt Ec(?2)
  • Risk preference
  • risk aversion, risk sympathy
  • Height preference

8
Related Work
9
Background Imprecise data
Retail price energy consumption
  • Precise value
  • Imprecise value
  • Unknown (partial information ignored)
  • Possible values
  • Probability distribution
  • Imprecise probabilities
  • Probability- necessity measures, etc.

EUR
0
1000
NULL
EUR
0
1000
EUR
0
1000
Pr
EUR
0
1000
PrL
PrU
1000
0.1
0.6
900
0.7
900, 1000
0.8
1200
0.8
10
Related Work
  • Research general approaches for information
    systems, databases
  • very complicated handling
  • semantics
  • Our approach
  • Description of imprecise data
  • Comparison/Sorting imprecise data
  • (Joining imprecise data)

Evaluating information systems Decision theory
11
Description of imprecise values
  • Very high expressive power
  • as much or as little information, as
    available
  • Set of possible values
  • Imprecise probabilities
  • Random sets!

EUR
0
1000
PrL
PrU
1000
0.1
0.6
900
0.7
900, 1000
0.8
1200
0.8
12
Sorting (comparing) imprecise values
  • Bernoulli principle
  • cost function known
  • precise probabilities
  • Extended Bernoulli-principle
  • possible values,imprecise probabilities
  • Cost function unknown

Alt1 gt Alt2 ? Ec(?1) lt Ec(?2)
Alt1 gt Alt2 ? EUc(?1) lt EL c(?2)
Alt1 lt Alt2 ? ELc(?1) gt Eu c(?2)
Alt1 Alt2 ? all other cases
13
Sorting (comparing) imprecise values
preferences no mathematical background limited
time
p-cut
p-cut value
14
Modified description
  • Expressive power unlimited
  • extended Bernoulli-principle
  • cost function
  • unknown
  • different from alternative to alternative
  • Form simplified
  • Set of possible values -gt interval
  • Lower upper probs. for random sets -gt selected
    sets

EUR
EUR
0
1000
0
1000
PrL
PrU
PrL
PrU
1000
0.1
0.6
900
0
0.7
900
900, 1000
0.7
0.8
0.1
0.2
900, 1000
900, 1000, 1100
0.8
1
1200
0.8
15
Conclusions
  • Evaluating information systems
  • imprecise data
  • Approach
  • concentrating on important issues, operations
  • decision theoretically correct
  • rather than general extension of a data model
  • Description
  • possible values, probability theory
  • complicated handling, interpretation

16
Conclusions
  • Sort operation
  • basis Bernoulli-principle, but
  • imprecisions more general
  • cost function unknown
  • extended Bernoulli-principle
  • powerful description of imprecise values
  • p-cuts
  • cost function unknown
  • Simplified description (expressive power not
    restricted)
  • Outlook
  • join operation
Write a Comment
User Comments (0)
About PowerShow.com