Title: Decision Support with Imprecise Data for Consumers
1Decision Support with Imprecise Data for Consumers
- Gergely Lukacs
- lukacs_at_ipd.uni-karlsruhe.de
- Institute for Program Structures and Data
Organisation - Universtität Karlsruhe
2Product Evaluations As of Today
Product labels (Energy Star)
Product evaluations (Which Magazine)
Web-metashopprice comparison
unbiased
--
professional
--
Usercommuni-cation
easy access
-
--
personalised
--
--
sophisticatedinformation
--
3Evaluating Information Systems
4Energy Saving Climate Change Mitigation
- Source
- Intergovernmental Panel on Climate Change
Climate Change 2001 Mitigation
5Imprecise Data inEvaluating Information Systems
Usage pattern
professional
Predictions (energy costs)
Product descriptions
Evaluating information system
Alternative database
Web-shop
electronic product label
classified advertisements
public transport timetable
6Background Imprecise Data
retail price energy consumption
- Precise value
- Imprecise value
- unknown (partial information ignored)
- possible values
- probability distribution
- imprecise probabilities
- probability- necessity measures, etc.
EUR
0
1000
NULL
EUR
0
1000
EUR
0
1000
Pr
EUR
0
1000
PrL
PrU
1000
0.1
0.6
900
0.7
900, 1000
0.8
1200
0.8
7Background Decisions under Imprecise Data
Pr
Pr
?
EUR
EUR
0
1000
0
1000
- Decision theory (economic science)
- Expected value
- Alt1 gt Alt2 ? E(?1) lt E(?2)
- Bernoulli-principle
- Alt1 gt Alt2 ? Ec(?1) lt Ec(?2)
- Risk preference
- risk aversion, risk sympathy
- Height preference
8Related Work
9Background Imprecise data
Retail price energy consumption
- Precise value
- Imprecise value
- Unknown (partial information ignored)
- Possible values
- Probability distribution
- Imprecise probabilities
- Probability- necessity measures, etc.
EUR
0
1000
NULL
EUR
0
1000
EUR
0
1000
Pr
EUR
0
1000
PrL
PrU
1000
0.1
0.6
900
0.7
900, 1000
0.8
1200
0.8
10Related Work
- Research general approaches for information
systems, databases - very complicated handling
- semantics
- Our approach
- Description of imprecise data
- Comparison/Sorting imprecise data
- (Joining imprecise data)
Evaluating information systems Decision theory
11Description of imprecise values
- Very high expressive power
- as much or as little information, as
available - Set of possible values
- Imprecise probabilities
- Random sets!
EUR
0
1000
PrL
PrU
1000
0.1
0.6
900
0.7
900, 1000
0.8
1200
0.8
12Sorting (comparing) imprecise values
- Bernoulli principle
- cost function known
- precise probabilities
- Extended Bernoulli-principle
- possible values,imprecise probabilities
- Cost function unknown
Alt1 gt Alt2 ? Ec(?1) lt Ec(?2)
Alt1 gt Alt2 ? EUc(?1) lt EL c(?2)
Alt1 lt Alt2 ? ELc(?1) gt Eu c(?2)
Alt1 Alt2 ? all other cases
13Sorting (comparing) imprecise values
preferences no mathematical background limited
time
p-cut
p-cut value
14Modified description
- Expressive power unlimited
- extended Bernoulli-principle
- cost function
- unknown
- different from alternative to alternative
- Form simplified
- Set of possible values -gt interval
- Lower upper probs. for random sets -gt selected
sets
EUR
EUR
0
1000
0
1000
PrL
PrU
PrL
PrU
1000
0.1
0.6
900
0
0.7
900
900, 1000
0.7
0.8
0.1
0.2
900, 1000
900, 1000, 1100
0.8
1
1200
0.8
15Conclusions
- Evaluating information systems
- imprecise data
- Approach
- concentrating on important issues, operations
- decision theoretically correct
- rather than general extension of a data model
- Description
- possible values, probability theory
- complicated handling, interpretation
16Conclusions
- Sort operation
- basis Bernoulli-principle, but
- imprecisions more general
- cost function unknown
- extended Bernoulli-principle
- powerful description of imprecise values
- p-cuts
- cost function unknown
- Simplified description (expressive power not
restricted) - Outlook
- join operation