Title: Pr
1Time-Dependent Density Functional Theory in
metal clusters
P.M. Dinh, E. Suraud
Laboratoire de Physique Théorique (Toulouse)
P.G. Reinhard, F. Fehrer
Institut für Theoretische Physik (Erlangen)
2Outline
- Nuclei vs. metal clusters
- DFT in metal clusters
- A cluster_at_substrate model
- Deposition of Na cluster on Ar surface
- Conclusion and perspectives
3Nuclei vs. Metal clusters
Nuclei
Metal clusters
N lt 300 nucleons
3 lt N lt 105-7 atoms
R r0 N 1/3
R rs N 1/3
relevant length scale
dense systems with strong Pauli
4Nuclei vs. Metal clusters
Interactions
Short range (nuclear) long range (Coulomb)
interactions
... 82 50 28 20 8 2
MEAN FIELD
Long range (Coulomb) interactions
... 138 92 40 20 8 2
5Nuclei vs. Metal clusters
Time scales
Alkalines (Li, Na, K, Rb, Cs)
Nuclei
6DFT in metal clusters
Degrees of freedom ?
Valence electrons
Ions core electrons atom
7DFT in metal clusters
How to solve the problem?
Exactly Ab initio methods of quantum
chemistry Wave packets in molecular physics But
very small systems
Adiabatically Born-Oppenheimer
approximation Electrons bound to ground state
surface But very weak excitations
Effectively Density Functional Theory
(effective mean field ) Level 1 Electrons only
(1984) ? Shells, plasmon, Level 2
Electrons ions (1994 ) ? Complete
non-adiabatic treatment of electrons and ions
3 groups Dresden, Kyoto-Seattle,
Erlangen-Toulouse Semi-classical versions
(Grenoble, Erlangen-Toulouse)
8DFT in metal clusters
start from HF procedure
(local)
for Coulomb system,
Hohenberg-Kohn (1964)
GS energy functional of r
9DFT in metal clusters
Local Density Approx.
Perdew, Wang (1992)
10DFT in metal clusters
dynamics ?
TDDFT
? Adiab. LDA or TDLDA
non-adiab. dynamics (?Born-Oppenheimer)
IONS ?
11TDDFT in metal clusters
I 5x1011 W/cm2 FWHM 125 fs w 2.3 eV delay
50 fs
Na9 under laser irradiation
12TDDFT in metal clusters
Optical response
Carbon chains
Na9
Calvayrac, Reinhard, Suraud (1998)
13A cluster_at_substrate model
easier with embedded or deposited clusters
Experiments...
Need to model interaction with environment
Na cluster Ar substrate
2 others classical d.o.f.
- DAr dynamically
- polarizable
- electron cloud
DAr
RAr
? gaussians, width from a(w)
14A cluster_at_substrate model
Coupling to valence electrons and ions
15Deposition of Na cluster on Ar surface
atom
Na and Na_at_Ar384
minimum in matrix !
16Deposition of Na cluster on Ar surface
atom
Na_at_Ar384
Ekin0 4.7 meV
mechanical wave in matrix
17Deposition of Na cluster on Ar surface
atom
Na_at_Ar384
Ekin0 4.7 meV
NO !
contradiction with previous BO calculations ?
Na_at_Ar383
complex cross-over between BO surfaces
18Deposition of Na cluster on Ar surface
cluster
Na6_at_Ar87
Ekin0 2.2 meV
soft material
- systematics on
- Ekin0
- size of Na cluster
- size of Ar cluster
- deformation
- transfer of kin. E
- wave celerity
- ...
19Conclusion
- MD-TDLDA powerful tool for metal clusters
- in agreement with experiments
- Interaction with polarizable Ar substrate
- quite cumbersome
- high computing-time
- very soft material
Perspectives
- Other materials ...
- In progress
- Ne, Kr substrates
- In the future
- hard substrates (MgO, NaCl)
- water environment
CNRS post-doc sept/oct 2006
20(No Transcript)
21DFT in metal clusters
Self-Interaction Correction