Lecture Notes 6 CS1502 - PowerPoint PPT Presentation

About This Presentation
Title:

Lecture Notes 6 CS1502

Description:

1. Lecture Notes 6. CS1502. Formal Proofs in Propositional Logic. 2. Reiteration. P. P. 3 ... (d) Intro 3, 2. 6. Disjunction Introduction. 1. P. P Q ... – PowerPoint PPT presentation

Number of Views:21
Avg rating:3.0/5.0
Slides: 17
Provided by: gan7
Category:

less

Transcript and Presenter's Notes

Title: Lecture Notes 6 CS1502


1
Lecture Notes 6CS1502
  • Formal Proofs in Propositional Logic

2
Reiteration
  • P P

3
Conjunctive Elimination
1. P?Q . . . P Q
? Elimination 1
? Elimination 1
4
Conjunctive Introduction
  • 1. P . . .2. Q . . .P ? Q

? Introduction 1,2
5
Proof
  • 1. Cube(b) ? Tet(d) 2. Large(d) 3.
    Tet(d) ? Elim 1 4.
    Tet(d) Large(d) ? Intro 3, 2

6
Disjunction Introduction
1. P . . .P ? Q
? Introduction 1
7
A?B C (B ? C) ? D
Prove
1. A?B 2. C 3. 4. 5.
B ? Elim 1
B ? C ? Intro 3, 2
(B ? C) ? D ? Intro 4
8
Disjunctive EliminationProof by cases
  • P ? Q . . . P
    S Q SS

? Elimination
9
(A B) v C C ? B
Prove
10
Negative Elimination
  • 1. ? ?P . . .P

? Elimination 1
11
Bottom Introduction
1. P10. ?P...?
? Introduction 1, 10
12
Negation Introduction
  • 7. P . . . 15.
    ? ? P

? Introduction 7-15
13
Negation IntroductionProof by contradiction
  • 10. ? P . . . 22.
    ? 23. ? ? P

? Introduction 10-22
? Elimination 23
24. P
14
Prove
Note This is a resolution step, something we are
covering later
15
Reminder Equivalences
  • Two FOL sentences P and Q mean the same thing
    (are logically equivalent, written P ? Q) iff
    they have the same truth value in all situations.
    If two sentences are logically equivalent, you
    can substitute one for the other.
  • Identity Laws P T ? P P v F ? P
  • Domination Laws P v T ? T P F ? F
  • Idempotent Laws P v P ? P P P ? P
  • Double Negation P ? P
  • Commutative Laws P v Q ? Q v P P Q ? Q P
  • Associative Laws (P v Q) v R ?P v (Q v R)
  • (P Q) R ? P
    (Q R)
  • Distributive Laws P v (Q R) ? (P v Q) (P v
    R)
  • P (Q v R) ?
    (P Q) v (P R)
  • DeMorgans Laws (P Q) ? P v Q
  • (P v Q) ? P
    Q

16
1. (P Q) 2 . (P v Q) 3 .
P 4 . P v Q v intro 3
5 . __ __ intro 4,2 6
. P intro 3-5 (p.by.cont)
7 . P elim 6
8 . Q 9 . P v Q v
intro 8 10. __ __
intro 9,2 11. Q intro
8-10 12. Q elim 11
13. P Q intro 7,12 14.
(P Q) reit 1 15. __
__ intro 13,14 16. (P v Q)
intro 2-15 17. P v Q elim 16
Write a Comment
User Comments (0)
About PowerShow.com