Towards a Logic Formalization of Taxonomic Concepts - PowerPoint PPT Presentation

About This Presentation
Title:

Towards a Logic Formalization of Taxonomic Concepts

Description:

Towards a Logic Formalization of Taxonomic Concepts. Dave Thau, ... homunculus. thau_at_learningsite.com. 5th International Conference on Ecological Informatics ... – PowerPoint PPT presentation

Number of Views:34
Avg rating:3.0/5.0
Slides: 23
Provided by: davet161
Category:

less

Transcript and Presenter's Notes

Title: Towards a Logic Formalization of Taxonomic Concepts


1
Towards a Logic Formalization of Taxonomic
Concepts
  • Dave Thau, Bertram Ludäscher, Shawn Bowers
  • UC Davis
  • thau_at_learningsite.com

2
Names are Confusing
Adapted from R. Peet
Ranunculus plumosa
R.plumosa var intermedia
R.plumosa var plumosa
Ranunculus pinetcola
Ranunculus plumosa
Ranunculus plumosa
Ranunculus homunculus
3
Impact on Data Analysis
  • Cant find data
  • If A º B, a search on A should retrieve B
  • Same if A ? B
  • Cant aggregate data
  • If A ? B, you should be able to combine data from
    A into B

4
Where In Greece Can I Find Ranunculus aquatilis?
?
R. aquatilis
R. trichophyllus
5
Mapping Taxonomies
FNA-03, 1997
Benson, 1948
?
Ranunculus aquatilis
Ranunculus aquatilis
º
R.a. var aquatilis
R.a. var diffusus
R.a. var hispidulus
R.a. var capillaceus
R.a. var calvescens
º
?
º
?
This results in 512 (more than 240 million)
possible sets of relationships.
6
Overview
  • The problems Names change, experts disagree,
    data become incomparable
  • The partial solution Taxonomic Concepts
  • Another part of the solution Logic
  • Representing taxonomy in logic
  • Using the representation to detect
    inconsistencies and discover new relations
  • Applications

7
Logic, why?
  • Precise modeling language
  • Solid mathematical basis
  • Good tools for reasoning are available
  • Explicit, portable representation (not buried
    in code)

8
Basic Taxonomy
A
  • Rooted tree
  • Only Isa relations

isa
isa
B
C
B
A
C
A
In the basic taxonomy ??T???isa?T?
9
Some Additional Constraints
  • No empty nodes
  • All nodes have at least one element
  • ????T????x n(x)??n ? N, T(N,E))
  • Disjointness
  • The children of a node are disjoint
  • ?!?T?????x n1(x) ? n2(x) ?
  • ?n1 m ? E, n2
    m ? E, T(N,E))
  • Closed World
  • A node with children is defined as the union of
    those children
  • This ones formula is a bit long trust me

10
Mapping Formulae
  • Mappings between nodes in two different
    taxonomies have their own??s
  • In the slides and proofs to come I will use these
    symbols

A ? B A is included in B A ? B A includes
B A ? B A and B are equivalent
11
Inferring Unstated Correspondences

Benson, 1948
Kartesz, 2004
Ranunculus arizonicus
Ranunculus arizonicus
Given º
Given ?
R.a. var chihuahua
R.a. var typicus
We can demonstrate ?
Peet, 2005 B.1948R.a.typicus is included in
K.2004R. arizonicus B.1948R. arizonicus is
congruent to K.2004R. arizonicus
12
Proving New Mappings
Benson, 1948
Kartesz, 2004
A Ranunculus arizonicus
D Ranunculus arizonicus
º
?
B R.a. var chihuahua
C R.a. var typicus
? ?
Show B ? D and ?(D ? B)
13
Formal Proof of Mapping
Part 1
Part 2
14
Inconsistent Mapping
Benson, 1948
Kartesz, 2004
Ranunculus hydrocharoides
Ranunculus hydrocharoides
º
R.h. var natans
R.h. var stolonifer
R.h. var typicus
R.h. var stolonifer
R.h. var typicus
º
º
Peet, 2005 B.1948R.h.stolonifer is congruent
to K.2004R.h.stolonifer B.1948R.h.typicus is
congruent to K.2004R.h.typicus B.1948R.
hydrocharoides is congruent to K.2004R.
hydrocharoides
15
Proving Inconsistency
Benson, 1948
Kartesz, 2004
Ranunculus hydrocharoides
Ranunculus hydrocharoides
º
R.h. var natans
R.h. var stolonifer
R.h. var typicus
R.h. var stolonifer
R.h. var typicus
º
º
16
Formal Proof of Inconsistency
17
Showing Inconsistency Using Popular Tools
Benson, 1948
Kartesz, 2004
Ranunculus
Ranunculus
Ranunculus petiolaris
Ranunculus petiolaris
Ranunculus macranthus


?
??
B.48R. petiolaris ? K.04R. petiolaris ? B.48R.
macranthus contradicts
B.48R. macranthus and B.48R. petiolaris are
disjoint.
Peet, 2005 B.1948R. macranthus contains
K.2004 R. petiolaris B.1948R. petiolaris is
contained by K. petiolaris
18
Resolving Inconsistencies
  • Trying to simultaneously satisfy no emptiness,
    disjointness and the closed world
  • Relaxing any of these makes the mapping
    consistent giving us clues to hidden truths
  • It turns out that Kartesz and Benson focus on
    different localities.

19
Inconsistent Mapping
Benson, 1948
Kartesz, 2004
Ranunculus hydrocharoides
Ranunculus hydrocharoides
º
R.h. var natans
R.h. var stolonifer
R.h. var typicus
R.h. var stolonifer
R.h. var typicus
º
º
Peet, 2005 B.1948R.h.stolonifer is congruent
to K.2004R.h.stolonifer B.1948R.h.typicus is
congruent to K.2004R.h.typicus B.1948R.
hydrocharoides is congruent to K.2004R.
hydrocharoides
20
Summary
  • Taxonomic Concepts are important
  • Logic is a useful tool when reasoning about
    mappings between taxonomies
  • We have the beginnings of a representation for
    taxonomies
  • That representation can find unstated mappings
  • And detect inconsistent mappings

21
Future Work
  • Beefing up the representation
  • Formalizing more constraints, such as rank
  • Working in other factors, such as locality
  • Adding intelligence to tools which build
    mappings
  • Using the representation in a workflow system to
    aid data integration

22
Thanks! Questions?
  • We would like to acknowledge
  • Bob Peet for the Ranunculus data set
  • NSF, under SEEK awards 0225676, 0225665, 0225635,
    and 0533368
Write a Comment
User Comments (0)
About PowerShow.com