Micromagnetic Simulations of Systems with Shape-Induced Anisotropy - PowerPoint PPT Presentation

About This Presentation
Title:

Micromagnetic Simulations of Systems with Shape-Induced Anisotropy

Description:

Micromagnetic Simulations of Systems with Shape-Induced ... go: electron gyromagnetic ratio, 1.67x107 Hz/Oe. a: phenomenological damping parameter, 0.1 : ... – PowerPoint PPT presentation

Number of Views:49
Avg rating:3.0/5.0
Slides: 22
Provided by: hep5
Learn more at: http://www.hep.fsu.edu
Category:

less

Transcript and Presenter's Notes

Title: Micromagnetic Simulations of Systems with Shape-Induced Anisotropy


1
Micromagnetic Simulations of Systems with
Shape-Induced Anisotropy
  • S. Hill Thompson

Florida State University
2
Manufactured Single-Domain Iron Nanopillars
  • Grown by STM-assisted CVD 1

200 nm
40 nm
1 S. Wirth, M. Field, D. D. Awschalom, and S. von
Molnar, Phys. Rev. B 57, R14028 (1998) J. Appl.
Phys. 85, 5249 (1999)
3
Background A Typical Simulation
Mz
4
Metastable Decay
F
Saddle point
Free energy barrier
Metastable minimum
Mz
Free energy vs. Mz
5
(No Transcript)
6
Lattice
Dynamic equation, Landau-Lifshitz-Gilbert (LLG)
on a computational lattice
7
Landau-Lifshitz-Gilbert (LLG)
  • uniform magnetization density
  • go electron gyromagnetic ratio, 1.67x107 Hz/Oe
  • a phenomenological damping parameter, 0.1
  • total local field at

8
Rescaling
  • M M/Ms
  • H H/Ms
  • r r/le
  • t ?oMst

9
Dipole interactions
Handled by the Fast Multipole Method O(n2)
O(n)
10
Realistic Models Computational Details
  • 6x6x90 computational lattice -gt 3240 sites
  • 10 nm x 10 nm x 150 nm Fe nanopillar
  • dt 0.083 picoseconds usin first-order Euler
    integration
  • Temperature 20 Kelvin
  • Applied Field 3160 Oe at 75 degrees from the
    easy axis
  • Fields dipole-dipole, thermal, exchange, Zeeman
  • 3-4 days on IBM SP3 using 20 processors

11
Cumulative Distribution Function of the Lifetime
t All Runs
12
Phase Plot of the Total Magnetization
13
Phase Plot of the Total Energy
Slower Mode
14
Two Distributions
Fast
Slow
15
Thermalization out of the T0K Metastable State
Quenched
Slower mode
16
Thermalization
T 20K
T 0K
17
Quench/Relax vs Slow Mode
Q/R
Slow
18
Projective Dynamics
Number of visits, N
Same, N (G S)
Growth, G
Shrinkage, S
Mz
Growth Probability G/N Shrinkage Probability
S/N
19
Projective Dynamics
Slower mode
Faster mode
20
Location of Extrema
21
Choosing the Correct Model
7x7x101 spins
1x1x17 spins
Stoner-Wohlfarth
  • 1-D models are not sufficient, full 3-D models
    are necessary

Wirth, et al, J. Appl. Phys. 85, 5249 (1999). Li,
et al, J. Appl Phys, 93, 7912 (2003). Li, et al,
J. Appl. Phys. Lett 80, 4644 (2002)
Write a Comment
User Comments (0)
About PowerShow.com