Mathematical backgroundnumber theorem - PowerPoint PPT Presentation

1 / 26
About This Presentation
Title:

Mathematical backgroundnumber theorem

Description:

a b mod n iff a and b have the same remainder when divided by n. Reflexivity. Symmetry ... a Zn , then a is invertible iff gcd(a,n)=1. 9. Extended Euclidean ... – PowerPoint PPT presentation

Number of Views:97
Avg rating:3.0/5.0
Slides: 27
Provided by: xuka
Category:

less

Transcript and Presenter's Notes

Title: Mathematical backgroundnumber theorem


1
Mathematical backgroundnumber theorem
  • Integers Z ,-3,-2,-1,0,1,2,3,
  • Division and properties of divisibility
  • Modular a mod b a b ?a/b?
  • Greatest common divisor dgcd(a,b)
  • Whenever ca and cb, then cd.
  • Least common multiple dlcm(a,b)
  • Whenever ac and bc, then dc.
  • Fact if agt0, bgt0, then lcm(a,b)ab /gcd(a,b)

2
Prime
  • If pgt2, the only divisors of p are 1 and p, then
    p is called prime, otherwise, composite
  • Prime number theorem ?(x) denotes ?primes ? x
  • ?(x) /(x/ln x) ? 1
  • x?17, then ?(x) ? x/ln x
  • x ? 1, then ?(x) ? 1.25506 x/ln x

3
Relatively prime (co-prime)
  • If gcd(a,b) 1, then a and b are co-prime.
  • Zn0,1,,n-1
  • Zn 0? b ? n gcd(b,n)1
  • Fact (Zn,?) forms a group.

4
Fundamental theorem of arithmetic
  • Any number gt2 has a unique factorization as a
    product of prime powers, regardless of order of
    primes.
  • gcd and lcm facts
  • Example
  • let a48642819, b3458271319 then
  • gcd(a,b) 219 38
  • lcm(a,b) 28 71319 442624.
  • Facts
  • if p is prime and pab, the pa or pb.
  • If ma and na, and gcd(m,n)1, then mna.

5
Algorithms in Z and complexity
  • Number of bits k lg n
  • Bit operations supposue kmax(lg a, lg b)
  • a b O(k)
  • a - b O(k)
  • a ? b O(k2) (precisely, O(lg a lg b))
  • a / b O(k2)
  • Example estimate the complexity of n!.

(n-2) (nk k) O(n2 (lg n)2)
6
Euclidean algorithm
  • Fact if agt0, bgt0 and agtb, then gcd(a,b)gcd(b,a
    mod b)
  • Algorithm
  • While b ? 0 do the following
  • Set r ? a mod b, a?b, b?r.
  • Return a.
  • Complexity
  • O((lg a)3), more precisely, O((lg a)2)

7
Modulo, congruence and Zn
  • a ? b mod n iff n divides a-b. called a is
    congruent to b modulo n.
  • Facts
  • a ? b mod n iff a and b have the same remainder
    when divided by n.
  • Reflexivity
  • Symmetry
  • Transitivity, therefore, equivalent class
  • If a1 ? b1 mod n and a2 ? b2 mod n
  • then a1a2 ? b1b2 mod n and
  • a1a2 ? b1b2 mod n
  • Define Zn 0,1,,n-1

8
Multiplicative inverse
  • Given a and n, the multiplicative inverse of a is
    an integer x such that ax ? 1 mod n.
  • If exist, then unique, denoted as xa-1
  • Given a,b ? Zn , define a/b mod n ab-1 mod n,
    only if b has multiplicative inverse.
  • Fact a ? Zn , then a is invertible iff
    gcd(a,n)1.

9
Extended Euclidean Algorithm
  • Algorithm computer b-1 mod a
  • t0 ? 0, t1 ? 1.
  • While b ? 0 do the following
  • Set q ? ?a/b?, t ? t0 ? q?t1, t0 ?t1, t1 ?t.
  • Set r ? a mod b, a?b, b?r. ,
  • If a is 1
  • then t0 is b-1 mod a (or a ? t0)
  • else no inverse
  • Complexity O((lg a)3), more precisely, O((lg
    a)2)

10
Chinese remainder theorem
  • Suppose m1,,mr are pairwise co-primes
  • Then the following congruence system
  • x ? a1 (mod m1)
  • x ? a2 (mod m2)
  • .
  • x ? ar (mod mr)
  • has a unique solution modulo Mm1??mr, which is
    given by
  • x ? ?i1raiMiyi mod M. Where MiM/mi and yi ?
    Mi-1 mod mi.

11
Specific CRT fact
  • If gcd(n1,n2) 1, then
  • x a mod n1
  • x a mod n2
  • Has a unique solution
  • x a mod n1n2

12
Multiplicative group Zn
  • Zn a ? Zn gcd(a, n)1
  • In particular, if n is prime, Zn 1,,n-1
  • Order of Zn is defined as Zn .
  • If a ? Zn , then the order of a, denoted as
    ord(a), is the least positive integer t such that
    at ? 1 mod n.
  • Fact for any multiplicative group G of order N
    and g ? G, ord(g)N. (Lagrange theorem)
  • Fact if ord(a)t and as ? 1 mod n, then ts.

13
Euler phi function ?
  • ?(n) denotes the integers co-prime to n.
  • ?(n) Zn
  • Fact
  • If p is prime, then ?(p) p-1
  • If p is prime and a?1, then ?(pa) pa pa-1
  • If gcd(m,n)1, then ?(mn) ?(m) ?(n)
  • If np1e1 p2e2 pkek , then ?(n) n
    (1-1/p1)(1-1/p2) (1-1/pk)
  • Fact
  • For n?5, ?(n) gtn / (6 ln ln n)

14
Euler theorem and Fermat theorem
  • Fact let n?2,
  • If a ? Zn , then a?(n) ?1 mod n. (Euler theorem)
  • If n is a product of distinct primes and r ?s mod
    ?(n) then ar ? as mod n for all integers a.
  • Fact let p be a prime
  • If gcd(a, p)1, then ap-1 ? 1 mod p. (Fermat
    theorem)
  • r ?s mod p-1 then ar ? as mod p for all integers
    a
  • In particular, ap ? a mod p

15
Generator or primitive element
  • let ?? Zn , if ord(?) ?(n), called generator.
  • In this case, Zn ?i mod n 0? i ??(n) -1
  • If Zn has a generator, then Zn is said to be
    cyclic.

16
Properties of generators
  • Zn has a generator iff n2,4,pk or 2pk where p
    is a prime and kgt1.
  • In particular, if p is a prime, Zp has a
    generator.
  • If ? is a generator of Zn , then b ? ?i mod n is
    also a generator iff gcd(i, ?(n))1.
  • If Zn is cyclic, the number of generators is ?
    (?(n)).
  • ? is a generator of Zn iff ??(n)/p ?1 mod n for
    each prime divisor p of ?(n).

17
Quadratic residue modulo n
  • let a? Zn, a is said to be a quadratic residue
    modulo n or a square modulo n if there exists an
    x such that x2 ? a mod n. otherwise a is called
    quadratic non-residue modulo n.
  • The set of all quadratic residue modulo n is
    denoted by Qn, The set of all quadratic
    non-residue modulo n is denoted by Qn

18
Quadratic residue (cont.)
  • Fact let p be an odd prime and ? is a generator
    of Zp , then
  • a is a quadratic residue iff a(p-1)/2 ? 1 mod p
  • a ? Zp is a quadratic residue iff a ? ?i mod p
    and i is even.
  • Therefore Qp Qp (p-1)/2.
  • Fact let npq and p, q are odd primes, then
  • a ? Zn is a quadratic residue iff a ? Qp and a
    ? Qq .
  • Therefore Qn Qp Qq (p-1)(q-1)/4.

19
Square root
  • let a? Zn, if x ? Zn satisfies x2 ? a mod n,
    then x is called the square root of a modulo n.
  • Fact
  • if p is an odd prime, and a? Qp, then a has
    exactly two square roots.
  • More generally, let np1e1 p2e2 pkek where
    the pi are distinct primes and eigt0. If a? Qp,
    then a has exactly 2k square roots.

20
Algorithms in Zn and complexity
  • If a, b ? Zn , then
  • (ab) mod nab or ab-n , O(lg a)
  • ab mod n, O((lg a)2)
  • Multiplicative inverse O((lg a)3) or O((lg a)2)
  • Modular exponentiation ak mod n
  • square-and-multiply algorithm
  • O((lg a)3)

21
Legendre symbol
  • Let p be an odd prime and a an integer, Legendre
    symbol is defined as

0, if pa,
1, if a ? Qp

-1, if a ? Qp
  • Fact properties of Legendre symbol (page 72 of
    textbook HAC)

22
Jacobi symbol
  • Let n ? 3 be odd with prime factorization
  • np1e1 p2e2 pkek , then Jacobi sysbol is
    defined as



In particular, if p is a prime, then Jacobi
symbol is just Legendre symbol.
  • Facts Properties of Jacobi symbol (See page 73
    of textbook HAC)

23
Abstract Algebra--group
  • Definition (G, )
  • Closed
  • Associative
  • Identity element 1,
  • Inverse element
  • If commutative, called abelian group.
  • Example
  • (Z, ) infinite group,
  • (Zn , ) group of order n (modulo n).
  • (Zn, ?) is not a group
  • (Zn, ?) is a group of order ?(n).

24
Abstract algebra--ring
  • Definition (R, , ?)
  • (R, ) abelian group with identity denoted 0.
  • ? is associative
  • Exist a multiplicative identity 1 ? 0
  • ? is distributive over .
  • If a ? b b ? a, then commutative ring.
  • Example
  • (Z, , ?) infinite commutative ring
  • (Zn , , ?) commutative ring (modulo n)
  • (Zn, , ?) is not a ring.
  • An element a of a ring R is called a unit of an
    invertible element if a has an inverse.
  • The set of units in a ring R forms a group under
    ?, called the group of unit of R.
  • Example the group of units of Zn is Zn.

25
Abstract algebra--field
  • Definition (F, , ?)
  • A commutative ring in which all non-zero elements
    have multiplicative inverse.
  • Example
  • (Z, , ?) is not a field.
  • (R, , ?) is a field.
  • Fact
  • (Zn, , ?) is a field iff n is a prime.

26
Polynomial rings
  • Definition
  • Degree, Division, remainder
  • Irreducible
  • Modulo
  • Extended Euclidean algorithm
Write a Comment
User Comments (0)
About PowerShow.com