Modeling project and study on Martian atmospheric convection - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Modeling project and study on Martian atmospheric convection

Description:

Modeling project and study on Martian atmospheric convection – PowerPoint PPT presentation

Number of Views:38
Avg rating:3.0/5.0
Slides: 23
Provided by: gfdde
Category:

less

Transcript and Presenter's Notes

Title: Modeling project and study on Martian atmospheric convection


1
Modeling project and study on Martian atmospheric
convection
  • Masatsugu Odaka
  • Hokkaido University, Japan
  • odakker_at_gfd-dennou.org

2
Contents
  • Overview of activities of our research group
  • Our scientific interests and numerical modeling
    projects
  • Introduce my previous and future work
  • Numerical simulation of Martian dry convection by
    using an anelastic model (Odaka, 2001)
  • Numerical simulation of Martian moist convection
    and development quasi-compressible
    non-hydrostatic model

3
Our scientific interests
  • Geophysical Fluid Dynamics (GFD) and numerical
    simulation
  • Fluid dynamics in Earth and planetary sciences
  • Meteorology and oceanography
  • Solid earth sciences (mantle convection and lava
    flow)
  • MHD dynamo in the Earths core
  • Planetary atmospheres
  • Solar nebula dynamics

4
Why planetary atmospheres?
  • Interested in unique atmospheric phenomenon which
    are not observed in the Earth
  • 4-days circulation in Venus
  • Global dust storm in Mars
  • Grate red spot and cloud belts in Jupiter
  • Investigate how our theory is universal or not
  • Understand atmospheric phenomenon of the Earth by
    comparing with those of another planets

5
To study planetary atmosphere
  • Numerical simulation is a powerful approach.
  • The amount of observational data of planetary
    atmospheres is small.
  • To understand simulation results and confirm
    whether those are appropriate or not,
  • Compare with observations (but it is limited)
  • Compare with those obtained by
  • Using reduced system model
  • Adapting same model (with different physical
    processes) for the Earth

6
Recent problems on numerical model
  • Backgrounds
  • Specialization and development of computers
  • Recent model becomes to be complicated.
  • Consists of a number of lines of numerical codes
    with huge amount of output data
  • Recognizing what is going on in it is becoming
    harder and harder.
  • In the older ages, different phenomena described
    by a set of similar equations can be understand
    in the similar way.
  • Nowadays, only those who know the particular
    aspect of a climate model know that.
  • It is not useful for comparative study on
    planetary atmospheres.

7
What kind of model is desired?
  • Easy to trace
  • Users are assumed to follow the codes
  • Easy to change
  • both to simplify and to complicate
  • Users are assumed to change the codes
  • Module structure to put or remove processes
  • Easy data manipulation
  • Free and open

8
Modeling project of our laboratory and
collaborators (GFD Dennou Club)
  • Data manipulation
  • gtool4 netCDF convention and gt4f90io
  • http//www.gfd-dennou.org/arch/gtool4/
  • Dennou-Ruby, GPHYS, GAVE
  • http//www.gfd-dennou.org/arch/ruby/
  • Hierarchical models
  • SPMODEL, GMS, DCPAM
  • Cover a set of models with a standardized form of
    coding
  • High performance models for simple GFD situations
  • ISPACK (used in SPMODEL)

9
Hierarchical modelshttp//www.gfd-dennou.org/arch
/dcmodel/
  • Spectral fluid models
  • dcpam
  • SPMODEL
  • Finite difference fluid models
  • GMS
  • deepconv
  • Energy model
  • Oboro

10
SPMODEL
  • A set of typical spectral models in GFD.
  • Try to improve readability of source code
  • Takehiro et al. 2002
  • http//www.gfd-dennou.org/arch/spmodel/
  • Define and prepare spectral operators
  • Fourier and Legendre transformation in ISPACK
    (Ishioka, 2002) is used.
  • For a given geometry, a set of spectral functions
    and transformations, derivatives, and so on are
    prepared.
  • Eliminate indices from variables
  • Fortran 90 features
  • Operators and variables
  • A standardized way of coding
  • Data I/O gt4f90io

11
SPMODEL coding style
  • Variables
  • xy_Var grid data
  • w_Var spectral data
  • Transformation function
  • w_xy(xy_Var) spectral transformation
  • xy_w(w_Var) inverse transformation
  • Operator function
  • xy_GradLon_w(w_Var) gradient(longitude)
  • xy_GradLat_w(w_Var) gradient(latitude)
  • w_Div_xy_xy(xy_Var,xy_Var) horizontal divergence
  • w_Jacobian_w_w(w_Var,w_Var) Jacovian
  • w_Lapla_w(w_Var) Laplacian

12
An example of SPMODELSpherical shallow water
model
13
An example of SPMODELSpherical shallow water
model
  • do it1,n
  • w_Zeta_A w_Zeta_B 2 dt !
    Vorticity equation
  • ( - w_Div_xy_xy( ( xy_Coli xy_w(w_Zeta)
    ) xy_GradLon_w(w_Chi) / R0,
  • ( xy_Coli
    xy_w(w_Zeta) ) xy_GradLat_w(w_Chi) / R0) / R0
  • w_Jacobian_w_w( w_xy( xy_Coli
    xy_w(w_Zeta) ), w_Psi ) / R02 )
  • w_D_A w_D_B 2 dt ! Divergence
    equation
  • ( w_Div_xy_xy( ( xy_Coli xy_w(w_Zeta)
    ) xy_GradLon_w(w_Psi) / R0,
  • ( xy_Coli xy_w(w_Zeta)
    ) xy_GradLat_w(w_Psi) / R0 ) / R0
  • w_Jacobian_w_w( w_xy( xy_Coli
    xy_w(w_Zeta) ), w_Chi ) / R02
  • - w_Lapla_w( Gravw_H w_E ) / R02
    )
  • w_H_A w_H_B 2 dt ! Mass
    conservation
  • ( - w_Div_xy_xy( xy_w(w_H)
    xy_GradLon_w(w_Chi) / R0,
  • xy_w(w_H)
    xy_GradLat_w(w_Chi) / R0 ) / R0
  • w_Jacobian_w_w( w_H, w_Psi ) / R02
    )
  • w_Zeta_B w_Zeta w_D_B w_D w_H_B
    w_H

14
Model list in SPMODEL
  • 1D
  • KdV equation
  • 2D
  • Channel models of barotoropic and shallow water
    with several boundary conditions
  • Convection models of several boundary conditions
  • Equatorial ß plane
  • Barotropic and Shallow water spherical model
  • 3D
  • Boussinesq Fluid in a Spherical Shell
  • MHD in a Spherical Shell
  • We are going to test SPMODEL framework for
    developing a GCM (DCPAM).

15
DCPAM (Dennou Club Planetary Atmospheric Model)
  • Three-dimensional atmospsheric model
  • Constructing 3D primitive dynamical core based on
    SPMODEL
  • 1D, 2D, 3D under the same coding rule.
  • System for exchanging physical processes
  • System for exchanging vertical descretization
    CP-grid to L-grid
  • Current status
  • Dynamical core is developed and Held and Suarez
    (1994) test is performed.
  • http//www.gfd-dennou.org/arch/prepri/2005/hokudai
    /morikawa/poster/pub/

16
GMS (grid modeling system)
  • The same way as SPMODEL but for finite difference
    models
  • Nakano and Nakajima
  • Define and prepare operators by the use of
    structured variable
  • Variables are defined as structured.
  • Functions (such as adding, subtracting, ...)
    should be prepared and explicit memory handling
    are needed.
  • http//ruby.gfd-dennou.org/workshop200403/masuo/
  • Sorry, in Japanese only

17
deepconv
  • A non-hydrostatic model
  • Nakajima, 1994
  • Based on anelstic system
  • Fortran77 source code
  • Applied for Mars (Odaka, 2001)
  • Next version model is under construction
  • Based on quasi-compressible system
  • Not include topography
  • Consider to apply for not only the Earth but also
    Mars, Jupiter condition
  • Use Fortran90 and coding style as like SPMODEL
  • Variables are not defined as structured.

18
deepconv coding stylewith C-grid
  • Variables
  • ss_Var data on scalar grid point
  • fs_Var data on flux grid point (x)
  • sf_Var data on flux grid point (y)
  • Transformation function
  • fs_Avrage_ss(ss_Var) scalar to flux grid point
  • ss_Average_fs(fs_Var) flux to scalar grid point
  • Operator function
  • fs_dx_ss(ss_Var) gradient(x-direction)
  • ss_dx_fs(fs_Var) gradient(x-direction)
  • ss_Div_fs_sf(fs_Var,sf_Var) horizontal divergence

19
deepconv
  • Current status
  • Dry model is developed.
  • Use 2nd order centered difference for advection
  • Try to introduce 4th order centered scheme and
    consider another advection scheme.
  • Several test runs are now performed.
  • Sound wave propagation
  • Scalar advection by uniform flow
  • Isolated thermal flow
  • http//www.gfd-dennou.org/arch/deepconv/arare/samp
    le/
  • Sorry, in Japanese only

20
My scientific research
  • Previous work
  • Numerical simulation of Martian dry convection by
    using an anelastic model (Odaka, 2001)
  • http//www.gfd-dennou.org/arch/prepri/2001/dps/mar
    sconv/pub/
  • Future plan
  • Numerical simulation of Martian moist convection
    and development quasi-compressible
    non-hydrostatic model

21
MotivationMoist convection in early Mars
  • Whether did warm climate in early Mars realize or
    not?
  • No due to CO2 condensation
  • Kasting (1991)
  • Yes scattering effect by CO2 ice clude
  • Forget Pierrehumbert (1997)
  • How about cloudiness and cloud distribution are ?
  • Is the circulation pattern is similar to that of
    terrestrial moist convection or not?

Colaprete and Toon, 2003 J. Geophys. Res. 108.
E4, 5025, Fig.7.
22
Problems
  • Introduction of CO2 condensation
  • Atmospheric mass is significantly changed.
  • Conservation of mass must be treated carefully.
  • Which governing equations is appropriate?
  • Quasi-compressible of fully compressible?
  • Which vertical coordinate?
  • Now under consideration
Write a Comment
User Comments (0)
About PowerShow.com