Title: Neutral Beam Diagnostics on FTU
1Neutral Beam Diagnostics on FTU
- De Angelis R.1, Charette E. 2 ,, Sarkissian A. 2,
Stansfield B. 2, Zanza V. 1
2Outline
- Objectives
- Implementation Method
- Measurements Principle and Validation
- Diagnostics Principle and Hardware
- Beam on Test Stand
- Future Activities
3Objectives
- Study Current Profile Effects on MHD Stability of
Tokamak Plasma gt Current Profile measurements - Study Electric Field Effects on Confinement gt
Impurity Rotation Velocity measurement - Study Impurity Transport and Control gt Impurity
Profile measurements
4Implementation
- Use Beam Emission Spectroscopy (Visible part of
the spectrum) as Main Diagnostic Tool - Use Fast Neutral Beam To Artificially Increase
Neutral Particle Content in Plasma CORE - Use Measurement of the Polarization angle of the
emitted spectrum from Excited Fast Neutrals to
measure the Poloidal magnetic Field Profile
Motional Stark Effect (MSE) - Use Modulated Beam to Increase Measurement
Sensitivity
5Schematics of MSE
- Stark Components
- For observation ?E
- ? (?m0) ?? E
- ? (?m?1) ?E
????polariz(r) ? ES vNBI x Btot ? q(r)
6Beam Spectrum
7Detection Geometry Schematic In FTU
BT 6-8 T Ip 1 MA ne 10 20 m-3 Te 5
keV Ti 2 keV
8 Method of Measurement
9Beam Parameters
E ? 40 keV Iioni ? 2.4 A Ieqneutri ? 1 A ? ?
0.4º/ beamlet, 20 mrad overall ?r?? 3cm Gas H2
, He Beam Fraction (50 H) gt Design
modification for improvement Beam Modulation 0
2kHz (Modulating Arc Current)
- DuoPIGatron Source
- Filament LaB6 (120 A) or W ?(? 1.5mm)
- Arc Current (lt60A) ne ? 5 1017 m 3 Te ?
12 eV - Extraction System 3 grigs (0,-45
kV,-40 kV) - Neutralizer PH2 5
mTorr - Main Power supply - 40kV, 2.5 A
- Auxiliary power supplies i, e ? 5kV, 1 A
10Validation of Operation Parameters
Fraction of Neutral Atom Beam density at Plasma
Centre nbeam /n0beam e-?nesTdl ?0.2 ,
sT40keV (ltsion,CX Vr1gtlts ion,e Vr2gt
ltsion,iVr3gt)/V nbeam I (1A)/e Vbeam (r
0R g)2. ? ? 3.51014 at/m 3 ltsvgtexc ltsvgtexc,e
ltsvgtexc,p ? 710-15 m3/s Beam excitation rate
d nexc /dt ne nbeam ltsvgtexc,e ni nbeam
ltsvgtexc,p 2 ni nbeam (ltsvgtexc,e ltsvgtexc,p)
? 21020 ((0.2)3.51014 ) 710-14 ? 1020
at/m3 /s Detected Photon flux d nexc
/dtVolumedetection solid angle ?
(1/4p)1020 at/m3 /s (2.10-4)10-2 ? 1013 Ph /s
B 2.51017 ph.m-2.str -1.s -1
11Beam Emission Spectroscopy
H0 Az --gt H A(Z-1)
- Ion Temperature
- He II ?4686 Å ?n4-3
- CVI ?5291 Å ?n8-7
- OVIII ?6068 Å ?n10-9
- Poloidal Rotation
- He II ?4686 Å ?n4-3
12Validations for Spectroscopic Measurements
- B ?cx (1/4?) ? lts vgtj? ò N Z N j dl
BminOMA 3 1015 ph./s/m 2 /ster (S/N 4)
13 Beam Set Up on Beam Stand
14Gas Management System
Gas Flux ?H2 2 Torr. L/ s PPort 105 Torr SH2
? 20,000 l/s Pumping System Ti Sublimation
16,000 l/s Cryo Pum 22,500l/s
Getters 20,000l/s
15Cooling System
Cooling Tank 1000 l Cooling Capacity
5kW Deionized water Water Pumps 70 l/m For
source and extraction Grids 120 l/m For power
supplies
16Modified Electric Configuration
Electromagnetic Electron Trap Vs Electrostatic
Electron Trap
17Beam Diagnostics on Test Stand
- Visible spectroscopy Beam Composition
- Infrared Camera Beam Profile
- Thermocouple Array Beam Power and Profile
18Beam Diagnostics on Beam Stand (single Beamlet)
19Upcoming Development Plan
- Increase Beam Power to its Maximum
- 19 hole Extraction System
- Identify and Optimize Proton Fraction in the Beam
- Optimize Beam Divergence
- Comparisons between Two alternative Electrical
Configurations - Develop Cathode-less Source
20Future Plans
- Upgrade Beam Energy
- Upgrade Beam Current
21Thank You For Your Attention