BATON - PowerPoint PPT Presentation

About This Presentation
Title:

BATON

Description:

BATON. A Balanced Tree Structure for. Peer-to-Peer Networks. ??f??s??? ????? ... ?? ? t?? BATON. ?? overlay d??t?? t?? ?ATON as??eta? se ??a d?ad??? ... BATON ... – PowerPoint PPT presentation

Number of Views:42
Avg rating:3.0/5.0
Slides: 18
Provided by: csU83
Category:
Tags: baton | baton

less

Transcript and Presenter's Notes

Title: BATON


1
BATON
  • A Balanced Tree Structure for
  • Peer-to-Peer Networks

??f??s??? ????? ?a?a???t?? ?ats????G??????
?a??a??t??Te?d???? ??a?as??d??G??????
??a????aß???a??a ???µµ?da??e???????
??sµ??S???? ???e??d??
2
??µ? t?? BATON
  • ?? overlay d??t?? t?? ?ATON ßas??eta? se ??a
    d?ad??? ?s????p?µ??? d??t??
  • ??a d??t?? e??a? ?s????p?µ??? a?? ??a ???e ??µß?
    t??, t? ???? t?? d?? ?p?d??t??? t?? ??µß??
    d?af??e? ?at? ??a t? p???
  • ???e ??µß?? a???e? se ??a ep?ped? L ?a? ??e? ??a?
    a???µ? (ap? 1 ??? 2L)
  • St??? ??µß??? ???e ep?p?d?? d????ta? a???µ?? sa?
    ?a ?p???a? ???? ?? ??µß?? (t??e?? d??t??)
  • ???e ??µß?? a?t?st???e? se ??a peer t??
    s?st?µat??

3
??µ? t?? BATON (2)
  • ???e peer ap????e?e? de??te? st? pat??a, sta
    pa?d??, st??? ?e?t??e? (in-order d??s??s?) ?a? se
    ??a s????? ap? ??µß??? ?d??? ep?p?d?? sta de???
    ?a? sta a??ste?? t??
  • O? te?e?ta??? ap????e???ta? st??? ?at????????
    p??a?e? (left right routing tables)
  • St??? p??a?e? ap????e???ta? s??desµ?? p???
    ??µß??? p?? ap????? ap?st?se?? ?se? µe d???µe??
    t?? 2 ap? t?? ??µß?
  • ?? de? ?p?????? ??p???? ??µß??, e?s????ta? null
    e???af?? ??a a?t??? st??? p??a?e?
  • ??a a??ste?? (? de??) routing table e??a? ?eµ?t?
    a? de? ?p?????? ?????e? null e???af?? se a?t?

4
?a??de??µa
0
Links to parent, children
Links to adjacent nodes
2
1
Links to neighbor nodes
4
3
5
6
8
10
9
9
7
14
13
12
11
20
16
15
19
17
18
28
21
25
26
27
22
24
23
5
Te???µata
  • Te???µa 1 ??a d??t?? e??a? ?s????p?µ??? a? t?
    a??ste?? ?a? t? de?? routing table ???e ??µß??
    p?? ??e? pa?d? e??a? ?eµ?ta
  • Te???µa 2 ?? ??a? ??µß??, ?st? ? x, pe????e? ??a
    s??desµ? p??? ??a ???? ??µß?, ?st? y, st?
    a??ste?? ? de?? routing table, t?te ? ????a? t??
    x ?a s??d?eta? µe t?? ????a t?? y (e?t?? a? ?????
    ?d?? ????a)

6
Node Join
  • G?a ?a e?sa??e? ??a? ??µß?? a??e? ?a ??????e?
    ??a? ?d? ?p?????ta ??µß?, st?? ?p??? st???e? Join
    Request.
  • ???e ??µß?? p?? ?aµß??e? Join Request ???e? ta
    e???
  • ?? ta Routing Tables t?? e??a? full ?a? ??e?
    ????te?a ap? 2 pa?d??, t?? d??eta? ?? pa?d? t??
    (Te???µa 1)
  • ??af??et???
  • ?? ??p??? ap? ta Routing Tables t?? de? e??a?
    full, p????e? t?? a?t?s? st?? pat??a.
  • ?????? a? ?p???e? ??µß?? st? Routing Table t??
    p?? ??e? ????te?a ap? 2 pa?d??, p????e? t??
    a?t?s? se a?t??.
  • ?????? p????e? t?? a?t?s? se ??p???? ?e?t??? t??
    (in-order neighbor)

7
Node Join ?a??de??µa 1
  • At (8)
  • are (8)s Rtables full? Y
  • has (8) less than 2 children? N
  • has (8) a neighbor with less than
  • 2 children? Y
  • ? forward REQ to him (7)

At (16) are (16)s Rtables full? N ? forward REQ
to parent (8)
  • At (7)
  • are (7)s Rtables full? Y
  • has (7) less than 2 children? Y
  • (x) becomes a child of (7)

(x) knows node (16) (x) sends JOIN REQ to (16)
0
2
1
4
3
5
6
9
10
8
7
14
13
12
11
20
17
18
19
15
16
x
28
21
25
26
27
22
24
23
Join REQ
x
8
Node Join ?a??de??µa 2
  • At (4)
  • are (4)s Rtables full? Y
  • has (4) less than 2 children? N
  • has (4) a neighbor with less than
  • 2 children? ?
  • ? forward REQ to one adjacent

At (19) are (19)s Rtables full? Y has (19) less
than 2 children? Y ? (x) becomes a child of (19)
0
(x) knows node (4) (x) sends JOIN REQ to (4)
x
1
2
Join REQ
4
3
5
6
10
7
9
8
14
13
12
11
20
16
15
17
18
19
28
21
25
26
27
22
24
23
x
9
Node Join
  • ? a?t?s? ??a e?sa???? µp??e? ?a p??????e? O(logN)
    f????, af?? e?a?t?ta? ap? t? ???? t?? d??d???.
  • ?ta? ??a? ??µß?? x d??eta? ??a? ??µß? y ?? pa?d?
    t??, t? e???? t?µ?? p?? e??p??ete?, µ?????eta?
    st??? d?? ??µß???
  • ?p?s??, e??µe?????ta? ?at?????a ?? adjacent t??
  • x ?a? t?? y, a?????a µe t? a? t? y e?s???e?
    sa? a??ste?? ? de?? pa?d? t?? x.
  • ?????, ? x e??µe???e? ????? t??? ??µß??? st?
    a??ste?? ?a? st? de?? routing table t?? ??a t??
    ?pa??? t?? y

a
a
x
x
y
10
Node Departure
  • G?a ?a ap?????se? ??a? ??µß?? f????
  • ?? de? ?p???e? ??µß?? sta Routing Table t?? p??
    ??e? pa?d?? µp??e? ?a ap?????se?
  • ??af??et???, p??pe? ?a ß?e? ??p???? ??µß? ?a t??
    a?t??atast?se? (FINDREPLACEMENT)
  • G?a ?a ap?????se? ??a? es?te????? ??µß?? µ?a
    a?t?s? FINDREPLACEMENT se ??a? ?e?t????? t??
    ??µß? (in-order)
  • ???????µ?? FINDREPLACEMENT ??a t?? ??µß? n
  • ?? ? n ??e? a??ste?? pa?d? p????e? t?? a?t?s? se
    a?t?
  • ?????? a? ??e? de?? pa?d? p????e? t?? a?t?s? se
    a?t?
  • ?????? a? ?p???e? ??µß?? m sta Routing Table t??
    p?? ??e? ??p??? pa?d?, p????e? t?? a?t?s? se
    ??p??? pa?d? t?? m
  • ?????? a?t??a??st? t?? ??µß? p?? ???e? ?a
    ap?????se?

11
?a??de??µa Node Departure
0
2
1
18
4
3
5
6
10
7
9
8
14
13
12
11
16
15
20
17
19
18
12
Node Departure
  • ? a?t?s? FINDREPLACEMENT µp??e? ?a p??????e?
    O(logN) f????, af?? e?a?t?ta? ap? t? ???? t??
    d??d???.
  • ???? ??a? ??µß?? y a?t??atast?se? ??a ??µß? x, ?
    ?p???? ap????e? ap? t? d??t??, p??pe? ?a
    e??µe??se? t??? ?e?t??????? t?? ??µß??? ?a? t??
    ????a t?? ?t? ?a ap?????se? ?a? µ?????e? t? e????
    t?µ?? p?? e??p??ete? se a?t???
  • ???? ?? ??µß?? µe s??d?sµ??? st?? x p??pe? ?a
    e??µe?????? ?ste ?a de?????? st?? y (????a?,
    pa?d??, ?e?t?????? ??µß??, ??µß?? p?? e??a?
    s??d?sµ??? st?? x sta routing tables)

13
Match Query
  • ??a??t??µe se ???e ??µß? ??a e???? t?µ??
  • G?a ???e ??µß? t?? Routing Table ap????e???µe t?
    e???? t?µ?? p?? e??p??ete?
  • ?? e???? t?µ?? p?? e??p??ete?ta? ap? ??a? ??µß?
    p??pe? ?a e??a? µe?a??te?? ap? t? e???? p??
    e??p??ete?ta? ap? t? a??ste?? ?p?d??d?? ?a?
    µ????te?? a?t?? t?? de???? ?p?d??d???
  • ?ta? ??a? ??µß?? x d??eta? ??a exact match query
    e????e? p??ta a? a???e? st? d??? t?? e????
  • ??af??et??? d??µ????e? t?? a?a??t?s? st?? ??µß?
    p?????sµ?? s?µf??a µe t?? a??????? a??????µ?

14
Exact Match Query Algorithm
  • Algorithm search exact(node n, query q, value v)
  • If ((LowerBound(n)ltv) and (vltUpperBound(n)))
  • q is executed at x 1
  • Else
  • If (UpperBound(n)ltv)
  • mTheFarthestNodeSatisfyingCondition
  • (lowerBound(m)ltv)
  • If (there exists such an m)
  • Forward q to m
  • Else
  • If (RightChild(n)!null)
  • Forward q to RightChild(n)
  • Else
  • Forward q to RightAdjacentNode(n)
  • End If
  • End If
  • Else
  • //A similar process is followed towards the left
  • End If

15
?a??de??µa exact query
0
(45-51)
2
1
(72-75)
(12-17)
4
(23-29)
3
5
6
(5-8)
(54-61)
(81-85)
10
7
9
8
14
13
12
11
(34-39)
(89-93)
(0-5)
(8-12)
(17-23)
(61-68)
(75-81)
(51-54)
16
15
19
18
17
(29-34)
(39-45)
(68-72)
(85-89)
(93-100)
16
Range Query
  • ??a range query ?e?t????e? µe t?? ?d?? a???ß??
    t??p? ?p?? ?a? ??a exact query, µe t?? d?af???
    ?t? ??????µe ??a µ?a t?µ? t?? a?a??t??µe???
    e????? µe t? e???? ??p???? ??µß??
  • ?ta? ß?e?e? ? t?µ? ????µe ??a tµ?µa t?? e?????
    t?µ?? p?? a?a??t??µe
  • ???????µe de??? ?a? a??ste?? t?? ??µß?? ??a ?a
    ?a?????µe t? ??t??µe?? e????

17
Data Insertion - Deletion
  • ???s?µ?p????µe t?? d?ad??as?a a?a??t?s?? ??a
    exact match query ??a ?a ß???µe t?? ??µß? st??
    ?p??? ?a ???e? ? e?sa????
  • ??te???µe t?? e?sa????
  • St??? ??µß??? st? a??ste?? (de??) ???? t??
    d??t??? ???µ????µe t? e???? t??? a? ? t?µ? p??
    e?s??eta? de? ?a??pteta? ap? t? ?p????? e????
  • G?a t?? d?a??af? ded?µ???? ß??s???µe µe t??
    µ???d? p?? ???s?µ?p??e?ta? ??a exact query t??
    ??µß? p?? ?e????eta? ta ded?µ??a ?a? ta
    d?a???f??µe
Write a Comment
User Comments (0)
About PowerShow.com