Real Time Systems - PowerPoint PPT Presentation

1 / 52
About This Presentation
Title:

Real Time Systems

Description:

6 bit proprietary codes (no lower case) IBM mainframes and compatibles. 8 bit EBCDIC code ... 7 bit ASCII (no national characters) 8 bit ASCII with proprietary ... – PowerPoint PPT presentation

Number of Views:29
Avg rating:3.0/5.0
Slides: 53
Provided by: infowe
Category:

less

Transcript and Presenter's Notes

Title: Real Time Systems


1
Chapitre 2 Représentations Internes des données
2
Binary Numbers
Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Binary 0000 0001 0010 0011 0100 0101 0110 0111 10
00 1001 1010 1011 1100 1101 1110 1111
Octal 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17
Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F
3
Binary NumbersSome useful values
128 256 1 024 32 768 65 536 2 147 483 148 4 294
967 296
27 28 210 215 216 231 232
? 103
4
Data Representations
  • Text
  • Baudot - ASCII - UNICODE
  • Numbers
  • Decimal - Binary / Integer - Floating point
  • Images
  • Bitmaps - Structured

5
Text Encoding
  • Telex public network
  • 5 bit/char BAUDOT code (Alph. Num. Mode)
  • Older computers (fifties and sixties)
  • 6 bit proprietary codes (no lower case)
  • IBM mainframes and compatibles
  • 8 bit EBCDIC code
  • Vast majority of modern computers
  • 7 bit ASCII (no national characters)
  • 8 bit ASCII with proprietary extensions
  • Microsoft NT systems
  • 16 bit Unicode for all known character-sets
  • ASCII is a subset of Unicode

6
Baudot Character Set (CCITT Nr 2)Alphabetical
State
7
Baudot Character Set (CCITT Nr 2)Numerical State
8
Printable ASCII Character Set
047
/
063
?
079
O
095
_
111
o
9
ASCII special characters
128
DEL
Delete
10
ASCII extensions for pc

_

207
223
239
255
11
Unicode
FFFF
12
Decimal Numbers
ASCII Characters 8 bit / digit. BCD Characters
4 bit / digit.
Example In a 32 bit word
13
Absolute Value Sign
  • Conventions
  • n number of bits in representation
  • M value to be represented
  • M' value of representation
  • Absolute Value Sign definition
  • M gt 0 M' M
  • M lt 0 M 2n-1 M
  • Range
  • - 2 n-1 lt M lt 2 n-1

14
Absolute Value Sign
0
1
-7
0000
0001
1111
2
-6
0010
1110
3
-5
0011
1101
1100
0100
4
-4
n 4
0101
1011
5
-3
0110
1010
6
-2
1001
0111
1000
-1
7
-0
15
Binary Offset
  • Conventions
  • n number of bits in representation
  • M value to be represented
  • M' value of representation
  • Binary offset definition
  • M 2n-1 M
  • Range
  • - 2 n-1 lt M lt 2 n-1

16
Binary Offset
-8
-7
7
0000
0001
1111
-6
6
0010
1110
-5
5
0011
1101
1100
0100
-4
4
n 4
0101
1011
-3
3
0110
1010
-2
2
1001
0111
1000
1
-1
0
17
Twos complement
  • Conventions
  • n number of bits in representation
  • M value to be represented
  • M' value of representation
  • Two's complement definition
  • M' (M 2n) MOD 2n
  • Range
  • - 2 n-1 lt M lt 2 n-1

18
Twos Complement
0
1
-1
0000
0001
1111
2
-2
0010
1110
3
-3
0011
1101
1100
0100
4
-4
0101
1011
5
-5
0110
1010
6
-6
1001
0111
1000
-7
7
-8
19
Some Twos Complement Numbers
4 bit
value
8 bit
16 bit
-32768
20
Twos complement Arithmetic
All arithmetic operations can be performed on
the twos complement representations, using
positive, modulo 2n arithmetic.
A 3 B -5
A 3 B 27
0 0 0 1 1 1 1 0 1 1
0 0 0 1 1
0 0 0 1 1
n 5
0 0 0 0 0
0 0 0 1 1
0 0 0 1 1
0 0 1 0 1 0 0 0 1
A B - 15
21
Twos complement Arithmetic
All arithmetic operations can be performed on
the twos complement representations, using
positive, modulo 2n arithmetic.
S A B with A gt 0 and B gt 0
A A B B
S (A B) MOD 2n A B S
Provided, of course, that S lt 2 n-1
22
Twos complement Arithmetic
All arithmetic operations can be performed on
the twos complement representations, using
positive, modulo 2n arithmetic.
S A B with A gt 0 and B lt 0
A A B B 2 n 2 n - B
S (A B) MOD 2n (A - B 2 n) MOD
2n Suppose A gt B (? S gt 0) then A - B
2 n gt 2n and S A - B S Suppose A lt B
(? S lt 0) then A - B 2 n lt 2n and S A
- B 2n S 2n
23
Twos complement Arithmetic
All arithmetic operations can be performed on
the twos complement representations, using
positive, modulo 2n arithmetic.
S A B with A lt 0 and B lt 0
A A 2n 2n - A B B 2n 2n - B
S (A B) MOD 2n (2.2n -(A B)) MOD
2n Where 2 lt A B lt 2n-1 therefore
2n1-2 gt (2.2n -(A B)) gt 3.2n-1 and
(2.2n -(A B)) MOD 2n (2.2n- 2n
-(A B)) or S (2n -(A
B)) 2n S
24
Twos complement Arithmetic
All arithmetic operations can be performed on
the twos complement representations, using
positive, modulo 2n arithmetic, provided that the
result is in range.
25
Twos complement Overflow
  • With a 16 bit representation
  • 30 000 10 000 - 7 232 !!!

26
With thanks to Ariane for the score
27
Twos complement Overflow
No carry from n-2 to n-1, nor from n-1 to n.
Carry from both n-2 to n-1, and n-1 to n.
28
Extended Multiplication
In general, two n bit factors give a 2n bit
product ! Simplest algorithm to compute a n bit
product Sign extend both factors to 2 n
bit Perform the multiplication modulo 2 2n
A 3 B -5
A 3 B 27
0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
n 4
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
1 1 1 1 0 0 0 1
A B - 15
29
Ones complement
  • Conventions
  • n number of bits in representation
  • M value to be represented
  • M' value of representation
  • Two's complement definition
  • M gt 0 M' M
  • M gt 0 M' M 2n - 1
  • Range
  • - 2 n-1 lt M lt 2 n-1

30
Ones Complement
0
1
-0
0000
0001
1111
2
-1
0010
1110
3
-2
0011
1101
1100
0100
4
-3
0101
1011
5
-4
0110
1010
6
-5
1001
0111
1000
-6
7
-7
31
REAL TypesApproximate representation for real
numbers
  • Possible values and accuracy
  • implementation dependant
  • majority of computer systems IEEE754.
  • Single precision (32 bit) float
  • Smallest value 10-38
  • Largest value 1038
  • Relative error lt 3 10-8
  • Double precision (64 bit) double
  • Smallest value 10-308
  • Largest value 10308
  • Relative error lt 10-16

32
Floating Point Numbers
base predefined constant (2 or 16)
Normalized Floating Point Number
33
Normalizationon a scale...
34
Relative erroron Normalized Floating Point
Numbers
35
Gradual Underflow
Normalized Underflow
0
1000.2
min1
1001.2
min
min
1000.2
36
Floating Point NumbersIEEE 754, Short Real
Sign
Significand
Exponent
Value
(-1)Sign 1.Significand 2 Exponent - 127 ?
0
(-1)Sign 0.Significand 2 - 126 0
37
Floating Point NumbersIEEE 754, Short Real
Sign
Significand
Exponent
Smallest 10 - 38 Largest 10 38 Rel.Error
3.0 10 - 8
38
Floating Point NumbersIEEE 754, Long Real
Sign
Significand
Exponent
Value
(-1)Sign 1.Significand 2 Exponent - 1023
? 0
(-1)Sign 0.Significand 2 - 1022 0
39
Floating Point NumbersIEEE 754, Long Real
Sign
Significand
Exponent
Smallest 10 - 308 Largest 10
308 Rel.Error 1.1 10 - 16
40
Floating Point NumbersIEEE 754, Temporary Real
Sign
Significand
Exponent
Value
(-1)Sign Significand 2 Exponent - 16383 ?
0
(-1)Sign Significand 2 - 16382 0
Significand 1.XXXX or 0.XXXX
41
Floating Point NumbersIEEE 754, Temporary Real
Sign
Significand
Exponent
Smallest 10 - 4932 Largest 10
4932 Rel.Error 5.4 10 - 20
42
Floating Point NumbersIEEE 754, Special values
  • Zero
  • Exponent all 0s
  • Significand all 0s
  • Infinity
  • Exponent all 1s
  • Significand all 0s
  • Not a Number
  • Exponent all 1s
  • Significand any non zero value

43
Encoding of Images
  • By means of bit maps
  • Each pixel is represented by one or several
    bytes.
  • By means of image components
  • ASCII codes for letters
  • Coordinates of end points for vector.
  • Coordinates of center radius for circle.

44
A bit map
Size 10 MBytes
45
An other bit map
Size 10 MBytes
46
A geometric construct
Size 13 KBytes
47
Alphanumeric Display
Number of character positions 80 24
1920. Number of different characters 256,
encoded by 8 bit. Number of bytes for entire
screen 1920. Number of pixels per character
8 20 160. Number of pixels on screen
1920 160 307 200 38 400 bytes
48
Data Compression
Four colours encoding 1000 colours, non-uniform
distribution
49
Data Compression
Four colours encoding 1000 colours, uniform
distribution
frequency
code
nbr of bits
code
nbr of bits
red
25
00
500
0
250
blue
25
01
500
10
500
green
25
10
500
110
750
yellow
25
11
500
111
750
50
Data CompressionShannons Law
Minimal Number of bits per symbol
nmin - ?ipi log2 pi
In the four colours example
51
Data Compression
  • Entropy coding
  • based on symbol frequency
  • No loss of information
  • used for data compression and storage
  • Examples
  • Huffman coding variable length codes
  • See colors example
  • run length encoding repetition factors
  • 123333320000000123333333311111112234
  • 12532701283712234
  • Example Zip - Unzip

52
Data Compression
  • Source coding
  • based on meaning of data
  • acceptable loss of information
  • used for data compression and storage
  • spectacular compression rates
  • Examples
  • GSM vocoders only for human voice
  • 64 Kb/s gt 13 Kb/s or 6.5 Kb/s
  • JPEG still images, compression 120
  • MPEG TV images, compression 1100
Write a Comment
User Comments (0)
About PowerShow.com