CS 395/495-26: Spring 2004 - PowerPoint PPT Presentation

About This Presentation
Title:

CS 395/495-26: Spring 2004

Description:

CS 395/495-26: Spring 2004. IBMR: Singular Value Decomposition (SVD Review) Jack Tumblin ... Zisserman Appendix 3, pg 556 (cryptic) Linear Algebra books ... – PowerPoint PPT presentation

Number of Views:14
Avg rating:3.0/5.0
Slides: 13
Provided by: JackTu1
Category:
Tags: cryptic | spring

less

Transcript and Presenter's Notes

Title: CS 395/495-26: Spring 2004


1
CS 395/495-26 Spring 2004
  • IBMR Singular Value Decomposition(SVD Review)
  • Jack Tumblin
  • jet_at_cs.northwestern.edu

2
Matrix Multiply A Change-of-Axes
  • Matrix Multiply Ax b
  • x and b are column vectors
  • A has m rows, n columns

x1 xn
a11 a1n am1 amn
b1 bm

b2
x2
x
b
Axb
b1
b3
x1
Input (N dim) (2D)
Output (M-dim) (3D)
3
Matrix Multiply A Change-of-Axes
  • Matrix Multiply Ax b
  • x and b are column vectors
  • A has m rows, n columns
  • Matrix multiply is just a set of dot-productsit
    changes coordinates for vector x, makes b.
  • Rows of A A1,A2,A3,... new coordinate axes
  • Ax a dot product for each new axis

x1 xn
a11 a1n am1 amn
b1 bm

A2
b2
x2
x
b
Axb
b1
A1
A3
b3
x1
Input (N dim) (2D)
Output (M-dim) (3D)
4
How Does Matrix stretch space?
  • Sphere of all unit-length x ? ellipsoid of b
  • Output ellipsoids axes are always perpendicular
    (true for any ellipsoid)
  • THUS we can make -, unit-length axes

ellipsoid (disk)
b2
x2
b
x
Axb
b1
1
1
x1
b3
u2
u1
Input (N dim.)
Output (M dim.)
5
SVD finds Output Vectors U, and
  • Sphere of all unit-length x ? ellipsoid of b
  • Output ellipsoids axes form orthonormal
    basis vectors Ui
  • Basis vectors Ui are columns of U matrix
  • SVD(A) USVT columns of U OUTPUT basis
    vectors

ellipsoid (disk)
b2
x2
b
x
Axb
b1
1
1
x1
b3
u2
u1
Input (N dim.)
Output (M dim.)
6
SVD finds Input Vectors V, and
  • For each Ui , make a matching Vi that
  • Transforms to Ui (with scaling si) si (A Vi)
    Ui
  • Forms an orthonormal basis of input space
  • SVD(A) USVT columns of V INPUT basis
    vectors

b2
x2
x
b
v1
Axb
b1
v2
x1
b3
u2
u1
Input (N dim.)
Output (M dim.)
7
SVD finds Scale factors S.
  • We have Unit-length Output Ui, vectors,
  • Each from a Unit-length Input Vi vector, so
  • So we need scale factor (singular values) si
    to link input to output si (A Vi) Ui
  • SVD(A) USVT

s1
b2
x2
x
b
v1
Axb
b1
v2
x1
b3
s2
u2
u1
Input (N dim.)
Output (M dim.)
8
SVD Review What is it?
  • Finish SVD(A) USVT
  • add missing Ui or Vi, define these si0.
  • Singular matrix S diagonals are si v-to-u
    scale factors
  • Matrix U, Matrix V have columns Ui and Vi

b2
x2
x
b
u3
v1
Axb
b1
v2
x1
b3
u2
u1
Input (N dim.)
Output (M dim.)
A USVT Find Input Output Axes, Linked
by Scale
9
Let SVDs Explain it All for You
  • cool! U and V are Orthonormal! U-1 UT, V-1
    VT
  • Rank(A)? of non-zero singular values si
  • ill conditioned? Some si are nearly zero
  • Invert a non-square matrix A ? Amazing!
    pseudo-inverse AUSVT A VS-1UT I
    so A-1 V S-1 UT

b2
x2
x
u3
v1
Axb
b1
v2
x1
b3
u2
u1
Input (N dim.)
Output (M dim.)
A USVT Find Input Output Axes, Linked
by Scale
10
Solve for the Null Space Ax0
  • Easy! x is the Vi axis that doesnt affect the
    output (si 0)
  • are all si nonzero? then the only answer is x0.
  • Null space because Vi is a DIMENSION--- x Vi
    a
  • More than 1 zero-valued si? null space gt1
    dimension... x aVi1 bVi2

b2
x2
x
u3
v1
Axb
b1
v2
x1
b3
u2
u1
Input (N dim.)
Output (M dim.)
A USVT Find Input Output Axes, Linked
by Scale
11
More on SVDs Handout
  • Zisserman Appendix 3, pg 556 (cryptic)
  • Linear Algebra books
  • Good online introduction (your handout) Leach,
    S. Singular Value Decomposition A primer,
    Unpublished Manuscript, Department of Computer
    Science, Brown University. http//www.cs.brown.edu
    /research/ai/dynamics/tutorial/Postscript/
  • Google on Singular Value Decomposition...

12
END
Write a Comment
User Comments (0)
About PowerShow.com